scispace - formally typeset
Search or ask a question

Showing papers on "PI3K/AKT/mTOR pathway published in 2002"


Journal ArticleDOI
TL;DR: Small-molecule therapeutics that block PI3K signalling might deal a severe blow to cancer cells by blocking many aspects of the tumour-cell phenotype.
Abstract: One signal that is overactivated in a wide range of tumour types is the production of a phospholipid, phosphatidylinositol (3,4,5) trisphosphate, by phosphatidylinositol 3-kinase (PI3K) This lipid and the protein kinase that is activated by it — AKT — trigger a cascade of responses, from cell growth and proliferation to survival and motility, that drive tumour progression Small-molecule therapeutics that block PI3K signalling might deal a severe blow to cancer cells by blocking many aspects of the tumour-cell phenotype

5,654 citations


Journal ArticleDOI
31 May 2002-Science
TL;DR: The PI3K pathway is implicated in human diseases including diabetes and cancer, and understanding the intricacies of this pathway may provide new avenues for therapuetic intervention.
Abstract: Phosphorylated lipids are produced at cellular membranes during signaling events and contribute to the recruitment and activation of various signaling components. The role of phosphoinositide 3-kinase (PI3K), which catalyzes the production of phosphatidylinositol-3,4,5-trisphosphate, in cell survival pathways; the regulation of gene expression and cell metabolism; and cytoskeletal rearrangements are highlighted. The PI3K pathway is implicated in human diseases including diabetes and cancer, and understanding the intricacies of this pathway may provide new avenues for therapuetic intervention.

5,381 citations


Journal ArticleDOI
26 Jul 2002-Cell
TL;DR: It is reported that mTOR forms a stoichiometric complex with raptor, an evolutionarily conserved protein with at least two roles in the mTOR pathway that through its association with mTOR regulates cell size in response to nutrient levels.

2,902 citations


Journal ArticleDOI
Ken Inoki1, Yong Li1, Tianquan Zhu1, Jun Wu1, Kun-Liang Guan1 
TL;DR: It is shown that TSC1–TSC2 inhibits the p70 ribosomal protein S6 kinase 1 and activates the eukaryotic initiation factor 4E binding protein 1 (4E-BP1, an inhibitor of translational initiation) and these functions are mediated by inhibition of the mammalian target of rapamycin (mTOR).
Abstract: Tuberous sclerosis (TSC) is an autosomal dominant disorder characterized by the formation of hamartomas in a wide range of human tissues. Mutation in either the TSC1 or TSC2 tumour suppressor gene is responsible for both the familial and sporadic forms of this disease. TSC1 and TSC2 proteins form a physical and functional complex in vivo. Here, we show that TSC1-TSC2 inhibits the p70 ribosomal protein S6 kinase 1 (an activator of translation) and activates the eukaryotic initiation factor 4E binding protein 1 (4E-BP1, an inhibitor of translational initiation). These functions of TSC1-TSC2 are mediated by inhibition of the mammalian target of rapamycin (mTOR). Furthermore, TSC2 is directly phosphorylated by Akt, which is involved in stimulating cell growth and is activated by growth stimulating signals, such as insulin. TSC2 is inactivated by Akt-dependent phosphorylation, which destabilizes TSC2 and disrupts its interaction with TSC1. Our data indicate a molecular mechanism for TSC2 in insulin signalling, tumour suppressor functions and in the inhibition of cell growth.

2,889 citations


Journal ArticleDOI
TL;DR: Recent developments in understanding the mechanisms and consequences of PKB/Akt activation in human malignancy are surveyed.

1,626 citations


Journal ArticleDOI
TL;DR: This approach identifies the tuberous sclerosis complex-2 gene product, tuberin, as a potential target of Akt/PKB, and demonstrates that, upon activation of PI3K, tuber in is phosphorylated on consensus recognition sites forPI3K-dependent S/T kinases.

1,507 citations


Journal ArticleDOI
01 Jun 2002-Immunity
TL;DR: It is shown that CD28 costimulation functions to increase glycolytic flux, allowing T cells to anticipate energetic and biosynthetic needs associated with a sustained response.

1,240 citations


Journal ArticleDOI
TL;DR: These studies position mTOR as an upstream activator of HIF-1 function in cancer cells and suggest that the antitumor activity of rapamycin is mediated, in part, through the inhibition of cellular responses to hypoxic stress.
Abstract: Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric transcription factor containing an inducibly expressed HIF-1α subunit and a constititutively expressed HIF-1β subunit. Under hypoxic conditions, the HIF-1α subunit accumulates due to a decrease in the rate of proteolytic degradation, and the resulting HIF-1α-HIF-1β heterodimers undergo posttranslational modifications that promote transactivation. Recent studies suggest that amplified signaling through phosphoinositide 3-kinase, and its downstream target, mTOR, enhances HIF-1-dependent gene expression in certain cell types. In the present study, we have explored further the linkage between mTOR and HIF-1 in PC-3 prostate cancer cells treated with hypoxia or the hypoxia mimetic agent, CoCl2. Pretreatment of PC-3 cells with the mTOR inhibitor, rapamycin, inhibited both the accumulation of HIF-1α and HIF-1-dependent transcription induced by hypoxia or CoCl2. Transfection of these cells with wild-type mTOR enhanced HIF-1 activation by hypoxia or CoCl2, while expression of a rapamycin-resistant mTOR mutant rendered both HIF-1α stabilization and HIF-1 transactivating function refractory to inhibition by rapamycin. Studies with GAL4-HIF-1α fusion proteins pinpointed the oxygen-dependent degradation domain as a critical target for the rapamycin-sensitive, mTOR-dependent signaling pathway leading to HIF-1α stabilization by CoCl2. These studies position mTOR as an upstream activator of HIF-1 function in cancer cells and suggest that the antitumor activity of rapamycin is mediated, in part, through the inhibition of cellular responses to hypoxic stress.

1,158 citations


Journal ArticleDOI
TL;DR: Data show that mTOR signals downstream to at least two independent targets, S6K1 and 4EBP1/eIF4E, that function in translational control to regulate mammalian cell size.
Abstract: The coordinated action of cell cycle progression and cell growth (an increase in cell size and cell mass) is critical for sustained cellular proliferation, yet the biochemical signals that control cell growth are poorly defined, particularly in mammalian systems. We find that cell growth and cell cycle progression are separable processes in mammalian cells and that growth to appropriate cell size requires mTOR- and PI3K-dependent signals. Expression of a rapamycin-resistant mutant of mTOR rescues the reduced cell size phenotype induced by rapamycin in a kinase-dependent manner, showing the evolutionarily conserved role of mTOR in control of cell growth. Expression of S6K1 mutants that possess partial rapamycin-resistant activity or overexpression of eIF4E individually and additively partially rescues the rapamycin-induced decrease in cell size. In the absence of rapamycin, overexpression of S6K1 or eIF4E increases cell size, and, when coexpressed, they cooperate to increase cell size further. Expression of a phosphorylation site-defective mutant of 4EBP1 that constitutively binds the eIF4E-Cap complex to inhibit translation initiation reduces cell size and blocks eIF4E effects on cell size. These data show that mTOR signals downstream to at least two independent targets, S6K1 and 4EBP1/eIF4E, that function in translational control to regulate mammalian cell size.

1,041 citations


Journal ArticleDOI
TL;DR: In this review, Akt signaling in endothelial cells and its critical roles in the regulation of vascular homeostasis and angiogenesis will be discussed.
Abstract: Akt is a serine/threonine protein kinase that is activated by a number of growth factors and cytokines in a phosphatidylinositol-3 kinase-dependent manner. Although antiapoptotic activity of Akt is well known, it also regulates other aspects of cellular functions, including migration, glucose metabolism, and protein synthesis. In this review, Akt signaling in endothelial cells and its critical roles in the regulation of vascular homeostasis and angiogenesis will be discussed.

968 citations


Journal ArticleDOI
TL;DR: Drosophila melanogaster Tsc2 seems to be the critical target of Akt in mediating growth signals for the insulin signalling pathway, and Stimulating Akt/PKB signalling in vivo markedly increases cell growth/size, disrupts the Tsc1–Tsc2 complex and disturbs the distinct subcellular localization of T Sc2.
Abstract: The direct mechanism by which the serine/threonine kinase Akt (also known as protein kinase B (PKB)) regulates cell growth is unknown. Here, we report that Drosophila melanogaster Akt/PKB stimulates growth by phosphorylating the tuberous sclerosis complex 2 (Tsc2) tumour suppressor and inhibiting formation of a Tsc1-Tsc2 complex. We show that Akt/PKB directly phosphorylates Drosophila Tsc2 in vitro at the conserved residues, Ser 924 and Thr 1518. Mutation of these sites renders Tsc2 insensitive to Akt/PKB signalling, increasing the stability of the Tsc1-Tsc2 complex within the cell. Stimulating Akt/PKB signalling in vivo markedly increases cell growth/size, disrupts the Tsc1-Tsc2 complex and disturbs the distinct subcellular localization of Tsc1 and Tsc2. Furthermore, all Akt/PKB growth signals are blocked by expression of a Tsc2 mutant lacking Akt phosphorylation sites. Thus, Tsc2 seems to be the critical target of Akt in mediating growth signals for the insulin signalling pathway.

Journal ArticleDOI
TL;DR: It is shown that activation of protein kinase B (PKB)/Akt, contributes to resistance to antiproliferative signals and breast cancer progression in part by impairing the nuclear import and action of p27.
Abstract: Mechanisms linking mitogenic and growth inhibitory cytokine signaling and the cell cycle have not been fully elucidated in either cancer or in normal cells. Here we show that activation of protein kinase B (PKB)/Akt, contributes to resistance to antiproliferative signals and breast cancer progression in part by impairing the nuclear import and action of p27. Akt transfection caused cytoplasmic p27 accumulation and resistance to cytokine-mediated G1 arrest. The nuclear localization signal of p27 contains an Akt consensus site at threonine 157, and p27 phosphorylation by Akt impaired its nuclear import in vitro. Akt phosphorylated wild-type p27 but not p27T157A. In cells transfected with constitutively active AktT308DS473D (PKBDD), p27WT mislocalized to the cytoplasm, but p27T157A was nuclear. In cells with activated Akt, p27WT failed to cause G1 arrest, while the antiproliferative effect of p27T157A was not impaired. Cytoplasmic p27 was seen in 41% (52 of 128) of primary human breast cancers in conjunction with Akt activation and was correlated with a poor patient prognosis. Thus, we show a novel mechanism whereby Akt impairs p27 function that is associated with an aggressive phenotype in human breast cancer. NOTE: In the version of the article initially published online, the abstract contained one extraneous sentence. This error has been corrected in the HTML and PDF versions. The abstract will appear correctly in the forthcoming print issue.

Journal ArticleDOI
TL;DR: Hamartin and tuberin function together to inhibit mammalian target of rapamycin (mTOR)-mediated signaling to eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1), which strongly implicate the tuberin-hamartin tumor suppressor complex as an inhibitor of mTOR.
Abstract: Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder that occurs upon mutation of either the TSC1 or TSC2 genes, which encode the protein products hamartin and tuberin, respectively. Here, we show that hamartin and tuberin function together to inhibit mammalian target of rapamycin (mTOR)-mediated signaling to eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). First, coexpression of hamartin and tuberin repressed phosphorylation of 4E-BP1, resulting in increased association of 4E-BP1 with eIF4E; importantly, a mutant of TSC2 derived from TSC patients was defective in repressing phosphorylation of 4E-BP1. Second, the activity of S6K1 was repressed by coexpression of hamartin and tuberin, but the activity of rapamycin-resistant mutants of S6K1 were not affected, implicating mTOR in the TSC-mediated inhibitory effect on S6K1. Third, hamartin and tuberin blocked the ability of amino acids to activate S6K1 within nutrient-deprived cells, a process that is dependent on mTOR. These findings strongly implicate the tuberin-hamartin tumor suppressor complex as an inhibitor of mTOR and suggest that the formation of tumors within TSC patients may result from aberrantly high levels of mTOR-mediated signaling to downstream targets.

Journal ArticleDOI
TL;DR: Data indicate that Akt may contribute to tumor-cell proliferation by phosphorylation and cytosolic retention of p27, thus relieving CDK2 from p27-induced inhibition.
Abstract: We have shown a novel mechanism of Akt-mediated regulation of the CDK inhibitor p27kip1. Blockade of HER2/neu in tumor cells inhibits Akt kinase activity and upregulates nuclear levels of the CDK inhibitor p27Kip1. Recombinant Akt and Akt precipitated from tumor cells phosphorylated wild-type p27 in vitro. p27 contains an Akt consensus RXRXXT157D within its nuclear localization motif. Active (myristoylated) Akt phosphorylated wild-type p27 in vivo but was unable to phosphorylate a T157A-p27 mutant. Wild-type p27 localized in the cytosol and nucleus, whereas T157A-p27 localized exclusively in the nucleus and was resistant to nuclear exclusion by Akt. T157A-p27 was more effective than wild-type p27 in inhibiting cyclin E/CDK2 activity and cell proliferation; these effects were not rescued by active Akt. Expression of Ser473 phospho Akt in primary human breast cancers statistically correlated with expression of p27 in tumor cytosol. These data indicate that Akt may contribute to tumor-cell proliferation by phosphorylation and cytosolic retention of p27, thus relieving CDK2 from p27-induced inhibition.

Journal ArticleDOI
TL;DR: This study reports that inhibition of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway enhances LPS-induced activation of the mitogen-activated protein kinase pathways (ERK1/2, p38, and JNK) and the downstream targets AP-1 and Egr-1, and provides new insight into the inhibitory mechanism by which the PI3K-Akt pathways ensures transient expression of these potent inflammatory mediators.

Journal ArticleDOI
31 May 2002-Cell
TL;DR: It is shown that chemotaxis pathways are activated along the lateral sides of cells and PI3K can initiate pseudopod formation, providing evidence for a direct instructional role ofPI3K in leading edge formation.

Journal ArticleDOI
TL;DR: It is described how the cytokine leukaemia inhibitory factor (LIF) sustains self-renewal through activation of the transcription factor STAT3, and how two other signals - extracellular-signal-related kinase (ERK) and phosphatidylinositol-3-OH Kinase (PI3K) - can influence differentiation and propagation, respectively.

Journal ArticleDOI
12 Sep 2002-Oncogene
TL;DR: Inhibition of activated AKT in EGFR or erbB2-dependent tumors by GW572016 may lead to tumor regressions when used as a monotherapy, or may enhance the anti-tumor activity of chemotherapeutics, since constitutive activation of AKT has been linked to chemo-resistance.
Abstract: Dual EGFR/erbB2 inhibition is an attractive therapeutic strategy for epithelial tumors, as ligand-induced erbB2/EGFR heterodimerization triggers potent proliferative and survival signals. Here we show that a small molecule, GW572016, potently inhibits both EGFR and erbB2 tyrosine kinases leading to growth arrest and/or apoptosis in EGFR and erbB2-dependent tumor cell lines. GW572016 markedly reduced tyrosine phosphorylation of EGFR and erbB2, and inhibited activation of Erk1/2 and AKT, downstream effectors of proliferation and cell survival, respectively. Complete inhibition of activated AKT in erbB2 overexpressing cells correlated with a 23-fold increase in apoptosis compared with vehicle controls. EGF, often elevated in cancer patients, did not reverse the inhibitory effects of GW572016. These observations were reproduced in vivo, where GW572016 treatment inhibited activation of EGFR, erbB2, Erk1/2 and AKT in human tumor xenografts. Erk1/2 and AKT represent potential biomarkers to assess the clinical activity of GW572016. Inhibition of activated AKT in EGFR or erbB2-dependent tumors by GW572016 may lead to tumor regressions when used as a monotherapy, or may enhance the anti-tumor activity of chemotherapeutics, since constitutive activation of AKT has been linked to chemo-resistance.

Journal ArticleDOI
TL;DR: It is shown that inhibiting Inr/PI3K signaling phenocopies the cellular and organismal effects of starvation, whereas activating this pathway bypasses the nutritional requirement for cell growth, causing starvation sensitivity at the organismal level.

Journal ArticleDOI
TL;DR: It is suggested that Akt enhances the ubiquitination-promoting function of Mdm2 by phosphorylation of Ser186, which results in reduction of p53 protein.

Journal Article
TL;DR: Data suggest that changes in cell cycle- and apoptosis-regulatory molecules after HER2 blockade with Herceptin result, at least in part, from the inhibition of Akt, and disabling PI3K and Akt is required for the antitumor effect of HER2 inhibitors.
Abstract: We have examined whether inhibition of phosphatidylinositol-3 kinase (PI3K) and its target, the serine/threonine kinase Akt, play a role in the antitumor effect of the HER2 antibody Herceptin. Herceptin inhibited colony formation, down-regulated cyclin D1, and increased p27 protein levels in the HER2 gene-amplified BT-474 and SKBR-3 human breast cancer cells. These effects were temporally associated with the inhibition of PI3K activity in vitro as well as Akt function as measured by steady-state levels of phospho-Ser473 Akt and kinase activity against glycogen synthase kinase (GSK)-3beta. These responses were not observed in MDA-361 and MDA-453 cells, which do not exhibit HER2 gene amplification and are relatively resistant to Herceptin. Treatment of BT-474 cells with Herceptin inhibited the constitutive tyrosine phosphorylation of HER3 and disrupted the basal association of HER3 with HER2 and of HER3 with p85alpha potentially explaining the inhibition of PI3K. Treatment with either Herceptin or the PI3K inhibitor LY294002 increased the levels of p27 in the nucleus>cytosol, thus increasing the ratio of p27:Cdk2 in the nucleus and inhibiting Cdk2 activity and cell proliferation. Antisense p27 oligonucleotides abrogated the increase in p27 induced by Herceptin and prevented the antibody-mediated reduction in S phase. Transduction of BT-474 cells with an adenovirus-encoding active (myristoylated) Akt (Myr-Akt), but not with a beta-galactosidase control adenovirus, prevented the Herceptin- or LY294002-induced down-regulation of cyclin D1 and of phosphorylated GSK-3beta and prevented the accumulation of p27 in the nucleus and cytosol. In addition, Myr-Akt prevented Herceptin-induced inhibition of the cell proliferation of BT-474 cells and Herceptin-induced apoptosis of SKBR-3 cells. These data suggest that (a) changes in cell cycle- and apoptosis-regulatory molecules after HER2 blockade with Herceptin result, at least in part, from the inhibition of Akt; and (b) disabling PI3K and Akt is required for the antitumor effect of HER2 inhibitors.

Journal ArticleDOI
TL;DR: It is proposed that inactivation of FoxO transcription factors by IL-2 plays a critical role in T cell proliferation and survival.
Abstract: The cytokine IL-2 plays a very important role in the proliferation and survival of activated T cells. These effects of IL-2 are dependent on signaling through the phosphatidylinositol 3-kinase (PI3K) pathway. We and others have shown that PI3K, through activation of protein kinase B/Akt, inhibits transcriptional activation by a number of forkhead transcription factors (FoxO1, FoxO3, and FoxO4). In this study we have investigated the role of these forkhead transcription factors in the IL-2-induced T cell proliferation and survival. We show that IL-2 regulates phosphorylation of FoxO3 in a PI3K-dependent fashion. Phosphorylation and inactivation of FoxO3 appears to play an important role in IL-2-mediated T cell survival, because mere activation of FoxO3 is sufficient to trigger apoptosis in T cells. Indeed, active FoxO3 can induce expression of IL-2-regulated genes, such as the cdk inhibitor p27Kip1 and the proapoptotic Bcl-2 family member Bim. Furthermore, we show that IL-2 triggers a rapid, PI3K-dependent, phosphorylation of FoxO1a in primary T cells. Thus, we propose that inactivation of FoxO transcription factors by IL-2 plays a critical role in T cell proliferation and survival.

Journal Article
TL;DR: It is shown that endogenous Akt activity promotes breast cancer cell survival and therapeutic resistance, and that induction of Akt by chemotherapy, trastuzumab, or tamoxifen might be an early compensatory mechanism that could be exploited to increase the efficacy of these therapies.
Abstract: To evaluate the role of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in breast cancer cell survival and therapeutic resistance, we analyzed a panel of six breast cancer cell lines that varied in erbB2 and estrogen receptor status. Akt activity was constitutive in four cell lines and was associated with either PTEN mutations or erbB2 overexpression. Akt promoted breast cancer cell survival because a PI3K inhibitor, LY294002, or transient transfection of a dominant-negative Akt mutant inhibited Akt activity and increased apoptosis. When combined with therapies commonly used in breast cancer treatment, LY294002 potentiated apoptosis caused by doxorubicin, trastuzumab, paclitaxel, or etoposide. Potentiation of apoptosis by LY294002 correlated with induction of Akt by doxorubicin or trastuzumab alone that occurred before the onset of apoptosis. Similar results were observed with tamoxifen. Combining LY294002 with tamoxifen in estrogen receptor-positive cells greatly potentiated apoptosis, which was correlated with tamoxifen-induced Akt phosphorylation that preceded apoptosis. To confirm that the effects of LY294002 on chemotherapy-induced apoptosis were attributable to inhibition of Akt, we transiently transfected breast cancer cells with dominant-negative Akt and observed increased doxorubicin-induced apoptosis. Conversely, stably transfecting cells with constitutively active Akt increased Akt activity and attenuated doxorubicin-induced apoptosis. These studies show that endogenous Akt activity promotes breast cancer cell survival and therapeutic resistance, and that induction of Akt by chemotherapy, trastuzumab, or tamoxifen might be an early compensatory mechanism that could be exploited to increase the efficacy of these therapies.

Journal ArticleDOI
TL;DR: Transduction of growth factor signaling via the Akt and Raf pathways requires functional Hsp90 and can be coordinately blocked by its inhibition, which results in a shortening of the half-life of Akt from 36 to 12 h and an 80% reduction in its expression.


Journal ArticleDOI
TL;DR: In this review, small molecules designed to specifically target Akt and other components of the PI3K/Akt pathway are now being developed for clinical use as single agents and in combination with chemotherapy to overcome therapeutic resistance.

Journal ArticleDOI
TL;DR: It is reported that growth factor withdrawal results in the loss of surface transporters for not only glucose but also amino acids, low-density lipoprotein, and iron, which creates a catabolic state characterized by atrophy and a decline in the mitochondrial membrane potential.
Abstract: In multicellular organisms, constituent cells depend on extracellular signals for growth, proliferation, and survival. When cells are withdrawn from growth factors, they undergo apoptosis. Expression of constitutively active forms of the serine/threonine kinase Akt/PKB can prevent apoptosis upon growth factor withdrawal. Akt-mediated survival depends in part on the maintenance of glucose metabolism, suggesting that reduced glucose utilization contributes to growth factor withdrawal-induced death. However, it is unclear how restricting access to extracellular glucose alone would lead to the metabolic collapse observed after growth factor withdrawal. We report herein that growth factor withdrawal results in the loss of surface transporters for not only glucose but also amino acids, low-density lipoprotein, and iron. This coordinated decline in transporters and receptors for extracellular molecules creates a catabolic state characterized by atrophy and a decline in the mitochondrial membrane potential. Activated forms of Akt maintained these transporters on the cell surface in the absence of growth factor through an mTOR-dependent mechanism. The mTOR inhibitor rapamycin diminished Akt-mediated increases in cell size, mitochondrial membrane potential, and cell survival. These results suggest that growth factors control cellular growth and survival by regulating cellular access to extracellular nutrients in part by modulating the activity of Akt and mTOR.

Journal ArticleDOI
TL;DR: Ectopic expression of cyclin D1 can partially overcome FoxO factor-induced cell cycle arrest, demonstrating that downregulation of D-type cyclins represents a physiologically relevant mechanism of FoxO- induced cell cycle inhibition.
Abstract: The FoxO forkhead transcription factors FoxO4 (AFX), FoxO3a (FKHR.L1), and FoxO1a (FKHR) represent important physiological targets of phosphatidylinositol-3 kinase (PI3K)/protein kinase B (PKB) signaling. Overexpression or conditional activation of FoxO factors is able to antagonize many responses to constitutive PI3K/PKB activation including its effect on cellular proliferation. It was previously shown that the FoxO-induced cell cycle arrest is partially mediated by enhanced transcription and protein expression of the cyclin-dependent kinase inhibitor p27kip1 (R. H. Medema, G. J. Kops, J. L. Bos, and B. M. Burgering, Nature 404:782-787, 2000). Here we have identified a p27kip1-independent mechanism that plays an important role in the antiproliferative effect of FoxO factors. Forced expression or conditional activation of FoxO factors leads to reduced protein expression of the D-type cyclins D1 and D2 and is associated with an impaired capacity of CDK4 to phosphorylate and inactivate the S-phase repressor pRb. Downregulation of D-type cyclins involves a transcriptional repression mechanism and does not require p27kip1 function. Ectopic expression of cyclin D1 can partially overcome FoxO factor-induced cell cycle arrest, demonstrating that downregulation of D-type cyclins represents a physiologically relevant mechanism of FoxO-induced cell cycle inhibition.

Journal ArticleDOI
TL;DR: It is demonstrated that huntingtin is a substrate of Akt and that phosphorylation of huntingtin by Akt is crucial to mediate the neuroprotective effects of IGF-1 and it is shown that AkT is altered in Huntington's disease patients.

Journal ArticleDOI
TL;DR: It is shown that insulin regulates HIF-1 action through a PI3K/TOR-dependent pathway, resulting in increased VEGF expression in retinal epithelial cells.