scispace - formally typeset
Search or ask a question

Showing papers on "Regulation of gene expression published in 2000"


Journal ArticleDOI
TL;DR: It is shown that mouse Snail is a strong repressor of transcription of the E-cadherin gene, opening up new avenues for the design of specific anti-invasive drugs.
Abstract: The Snail family of transcription factors has previously been implicated in the differentiation of epithelial cells into mesenchymal cells (epithelial-mesenchymal transitions) during embryonic development. Epithelial-mesenchymal transitions are also determinants of the progression of carcinomas, occurring concomitantly with the cellular acquisition of migratory properties following downregulation of expression of the adhesion protein E-cadherin. Here we show that mouse Snail is a strong repressor of transcription of the E-cadherin gene. Epithelial cells that ectopically express Snail adopt a fibroblastoid phenotype and acquire tumorigenic and invasive properties. Endogenous Snail protein is present in invasive mouse and human carcinoma cell lines and tumours in which E-cadherin expression has been lost. Therefore, the same molecules are used to trigger epithelial-mesenchymal transitions during embryonic development and in tumour progression. Snail may thus be considered as a marker for malignancy, opening up new avenues for the design of specific anti-invasive drugs.

3,426 citations


Journal ArticleDOI
07 Jul 2000-Cell
TL;DR: A reference database or "compendium" of expression profiles corresponding to 300 diverse mutations and chemical treatments in S. cerevisiae is constructed, and it is shown that the cellular pathways affected can be determined by pattern matching, even among very subtle profiles.

2,698 citations


Journal ArticleDOI
TL;DR: It is shown that the transcription factor Snail, which is expressed by fibroblasts and some E-cadherin-negative epithelial tumour cell lines, binds to three E-boxes present in the human E-CADherin promoter and represses transcription of E- cadhersin.
Abstract: The adhesion protein E-cadherin plays a central part in the process of epithelial morphogenesis. Expression of this protein is downregulated during the acquisition of metastatic potential at late stages of epithelial tumour progression. There is evidence for a transcriptional blockage of E-cadherin gene expression in this process. Here we show that the transcription factor Snail, which is expressed by fibroblasts and some E-cadherin-negative epithelial tumour cell lines, binds to three E-boxes present in the human E-cadherin promoter and represses transcription of E-cadherin. Inhibition of Snail function in epithelial cancer cell lines lacking E-cadherin protein restores the expression of the E-cadherin gene.

2,534 citations


Journal ArticleDOI
02 Nov 2000-Nature
TL;DR: Two small RNAs regulate the timing of Caenorhabditis elegans development and may control late temporal transitions during development across animal phylogeny.
Abstract: Two small RNAs regulate the timing of Caenorhabditis elegans development. Transition from the first to the second larval stage fates requires the 22-nucleotide lin-4 RNA and transition from late larval to adult cell fates requires the 21-nucleotide let-7 RNA. The lin-4 and let-7 RNA genes are not homologous to each other, but are each complementary to sequences in the 3' untranslated regions of a set of protein-coding target genes that are normally negatively regulated by the RNAs. Here we have detected let-7 RNAs of ~21 nucleotides in samples from a wide range of animal species, including vertebrate, ascidian, hemichordate, mollusc, annelid and arthropod, but not in RNAs from several cnidarian and poriferan species, Saccharomyces cerevisiae, Escherichia coli or Arabidopsis. We did not detect lin-4 RNA in these species. We found that let-7 temporal regulation is also conserved: let-7 RNA expression is first detected at late larval stages in C. elegans and Drosophila , at 48 hours after fertilization in zebrafish, and in adult stages of annelids and molluscs. The let-7 regulatory RNA may control late temporal transitions during development across animal phylogeny.

2,532 citations


Journal ArticleDOI
TL;DR: Using cDNA microarrays to explore the variation in expression of approximately 8,000 unique genes among the 60 cell lines used in the National Cancer Institute's screen for anti-cancer drugs provided a novel molecular characterization of this important group of human cell lines and their relationships to tumours in vivo.
Abstract: We used cDNA microarrays to explore the variation in expression of approximately 8,000 unique genes among the 60 cell lines used in the National Cancer Institute's screen for anti-cancer drugs. Classification of the cell lines based solely on the observed patterns of gene expression revealed a correspondence to the ostensible origins of the tumours from which the cell lines were derived. The consistent relationship between the gene expression patterns and the tissue of origin allowed us to recognize outliers whose previous classification appeared incorrect. Specific features of the gene expression patterns appeared to be related to physiological properties of the cell lines, such as their doubling time in culture, drug metabolism or the interferon response. Comparison of gene expression patterns in the cell lines to those observed in normal breast tissue or in breast tumour specimens revealed features of the expression patterns in the tumours that had recognizable counterparts in specific cell lines, reflecting the tumour, stromal and inflammatory components of the tumour tissue. These results provided a novel molecular characterization of this important group of human cell lines and their relationships to tumours in vivo.

2,192 citations



Journal ArticleDOI
25 May 2000-Nature
TL;DR: The results reveal that DNA methylation can control gene expression by modulating enhancer access to the gene promoter through regulation of an enhancer boundary.
Abstract: The expression of the insulin-like growth factor 2 (Igf2) and H19 genes is imprinted. Although these neighbouring genes share an enhancer, H19 is expressed only from the maternal allele, and Igf2 only from the paternally inherited allele. A region of paternal-specific methylation upstream of H19 appears to be the site of an epigenetic mark that is required for the imprinting of these genes. A deletion within this region results in loss of imprinting of both H19 and Igf2 (ref. 5). Here we show that this methylated region contains an element that blocks enhancer activity. The activity of this element is dependent upon the vertebrate enhancer-blocking protein CTCF. Methylation of CpGs within the CTCF-binding sites eliminates binding of CTCF in vitro, and deletion of these sites results in loss of enhancer-blocking activity in vivo, thereby allowing gene expression. This CTCF-dependent enhancer-blocking element acts as an insulator. We suggest that it controls imprinting of Igf2. The activity of this insulator is restricted to the maternal allele by specific DNA methylation of the paternal allele. Our results reveal that DNA methylation can control gene expression by modulating enhancer access to the gene promoter through regulation of an enhancer boundary.

1,703 citations


Journal ArticleDOI
29 Sep 2000-Science
TL;DR: It is shown that the glucocorticoid hormone analog dexamethasone induces circadian gene expression in cultured rat-1 fibroblasts and transiently changes the phase of circadian gene Expression in liver, kidney, and heart, however, dexamETHasone does not affect cyclic geneexpression in neurons of the suprachiasmatic nucleus.
Abstract: In mammals, circadian oscillators reside not only in the suprachiasmatic nucleus of the brain, which harbors the central pacemaker, but also in most peripheral tissues. Here, we show that the glucocorticoid hormone analog dexamethasone induces circadian gene expression in cultured rat-1 fibroblasts and transiently changes the phase of circadian gene expression in liver, kidney, and heart. However, dexamethasone does not affect cyclic gene expression in neurons of the suprachiasmatic nucleus. This enabled us to establish an apparent phase-shift response curve specifically for peripheral clocks in intact animals. In contrast to the central clock, circadian oscillators in peripheral tissues appear to remain responsive to phase resetting throughout the day.

1,650 citations


Journal ArticleDOI
TL;DR: Methylation changes constitute potentially sensitive molecular markers to define risk states, monitor prevention strategies, achieve early diagnosis, and track the prognosis of cancer.

1,625 citations


Journal ArticleDOI
15 Dec 2000-Science
TL;DR: This study presents a comprehensive view of the temporal compartmentalization of physiological pathways by the circadian clock in a eukaryote.
Abstract: Like most organisms, plants have endogenous biological clocks that coordinate internal events with the external environment. We used high-density oligonucleotide microarrays to examine gene expression in Arabidopsis and found that 6% of the more than 8000 genes on the array exhibited circadian changes in steady-state messenger RNA levels. Clusters of circadian-regulated genes were found in pathways involved in plant responses to light and other key metabolic pathways. Computational analysis of cycling genes allowed the identification of a highly conserved promoter motif that we found to be required for circadian control of gene expression. Our study presents a comprehensive view of the temporal compartmentalization of physiological pathways by the circadian clock in a eukaryote.

1,600 citations


Journal ArticleDOI
25 May 2000-Nature
TL;DR: It is shown that CTCF, a zinc finger protein implicated in vertebrate boundary function, binds to several sites in the unmethylated imprinted-control region that are essential for enhancer blocking, the first example, to the authors' knowledge, of a regulated chromatin boundary in vertebrates.
Abstract: The Insulin-like growth factor 2 (Igf2) and H19 genes are imprinted, resulting in silencing of the maternal and paternal alleles, respectively This event is dependent upon an imprinted-control region two kilobases upstream of H19 (refs 1, 2) On the paternal chromosome this element is methylated and required for the silencing of H19 (refs 2-4) On the maternal chromosome the region is unmethylated and required for silencing of the Igf2 gene 90 kilobases upstream We have proposed that the unmethylated imprinted-control region acts as a chromatin boundary that blocks the interaction of Igf2 with enhancers that lie 3' of H19 (refs 5, 6) This enhancer-blocking activity would then be lost when the region was methylated, thereby allowing expression of Igf2 paternally Here we show, using transgenic mice and tissue culture, that the unmethylated imprinted-control regions from mouse and human H19 exhibit enhancer-blocking activity Furthermore, we show that CTCF, a zinc finger protein implicated in vertebrate boundary function, binds to several sites in the unmethylated imprinted-control region that are essential for enhancer blocking Consistent with our model, CTCF binding is abolished by DNA methylation This is the first example, to our knowledge, of a regulated chromatin boundary in vertebrates

Journal ArticleDOI
TL;DR: Gene-drug relationships for the clinical agents 5-fluorouracil and L-asparaginase exemplify how variations in the transcript levels of particular genes relate to mechanisms of drug sensitivity and resistance.
Abstract: We used cDNA microarrays to assess gene expression profiles in 60 human cancer cell lines used in a drug discovery screen by the National Cancer Institute. Using these data, we linked bioinformatics and chemoinformatics by correlating gene expression and drug activity patterns in the NCI60 lines. Clustering the cell lines on the basis of gene expression yielded relationships very different from those obtained by clustering the cell lines on the basis of their response to drugs. Gene-drug relationships for the clinical agents 5-fluorouracil and L-asparaginase exemplify how variations in the transcript levels of particular genes relate to mechanisms of drug sensitivity and resistance. This is the first study to integrate large databases on gene expression and molecular pharmacology.

Journal ArticleDOI
TL;DR: Smad7 is defined as an adaptor in an E3 ubiquitin-ligase complex that targets the TGF beta receptor for degradation, and mutants that interfere with recruitment of Smurf2 to the receptors are compromised in their inhibitory activity.

Journal ArticleDOI
TL;DR: Redox regulation of gene expression by superoxide and other related oxidants and antioxidants is beginning to unfold as a vital mechanism in health and disease.

Journal ArticleDOI
TL;DR: The discussion presented here provides a tabular summary of many of the redox effects on gene expression and signaling pathways that are currently known to exist, and highlights the growing number of pathways shown to be dependent on oxidation or antioxidation.

Journal ArticleDOI
TL;DR: A feeding strategy of P. rapae is revealed that may minimize the activation of a subset of water stress–inducible, defense-related genes that contribute to tissue defense and repair.
Abstract: Wounding in multicellular eukaryotes results in marked changes in gene expression that contribute to tissue defense and repair. Using a cDNA microarray technique, we analyzed the timing, dynamics, and regulation of the expression of 150 genes in mechanically wounded leaves of Arabidopsis. Temporal accumulation of a group of transcripts was correlated with the appearance of oxylipin signals of the jasmonate family. Analysis of the coronatine-insensitive coi1-1 Arabidopsis mutant that is also insensitive to jasmonate allowed us to identify a large number of COI1-dependent and COI1-independent wound-inducible genes. Water stress was found to contribute to the regulation of an unexpectedly large fraction of these genes. Comparing the results of mechanical wounding with damage by feeding larvae of the cabbage butterfly (Pieris rapae) resulted in very different transcript profiles. One gene was specifically induced by insect feeding but not by wounding; moreover, there was a relative lack of water stress-induced gene expression during insect feeding. These results help reveal a feeding strategy of P. rapae that may minimize the activation of a subset of water stress-inducible, defense-related genes.

Journal ArticleDOI
TL;DR: In the majority of solid tumors examined, including bladder, brain, breast, colon, ovarian, pancreatic, prostate, and renal carcinomas, nuclear expression of HIF-1α and -2α was observed in varying subsets of the tumor cells.
Abstract: The cellular response to hypoxia includes the hypoxia-inducible factor-1 (HIF-1)-induced transcription of genes involved in diverse processes such as glycolysis and angiogenesis. Induction of the HIF-regulated genes, as a consequence of the microenvironment or genetic changes, is known to have an important role in the growth of experimental tumors. Hypoxia-inducible factors 1α and 2α (HIF-1α and HIF-2α) are known to dimerize with the aryl hydrocarbon receptor nuclear translocator in mediating this response. Because regulation of the α chain protein level is a primary determinant of HIF activity, our aim was to investigate the distribution of HIF-1α and HIF-2α by immunohistochemistry in normal and pathological tissues using monoclonal antibodies (mAb). We raised a new mAb to detect HIF-1α, designated 122, and used our previously validated mAb 190b to HIF-2α. In the majority of solid tumors examined, including bladder, brain, breast, colon, ovarian, pancreatic, prostate, and renal carcinomas, nuclear expression of HIF-1α and -2α was observed in varying subsets of the tumor cells. HIF-2α was also strongly expressed by subsets of tumor-associated macrophages, sometimes in the absence of any tumor cell expression. Less frequently staining was observed in other stromal cells within the tumors and in normal tissue adjacent to tumor margins. In contrast, in normal tissue neither molecule was detectable except within subsets of bone marrow macrophages, where HIF-2α was strongly expressed.

Journal ArticleDOI
TL;DR: Neither toxic nor adverse physiological effects of the XVE system have been observed in transgenic Arabidopsis plants under all the conditions tested and it appears to be a reliable and efficient chemical-inducible system for regulating transgene expression in plants.
Abstract: We have developed an estrogen receptor-based chemical-inducible system for use in transgenic plants. A chimeric transcription activator, XVE, was assembled by fusion of the DNA-binding domain of the bacterial repressor LexA (X), the acidic transactivating domain of VP16 (V) and the regulatory region of the human estrogen receptor (E; ER). The transactivating activity of the chimeric XVE factor, whose expression was controlled by the strong constitutive promoter G10-90, was strictly regulated by estrogens. In transgenic Arabidopsis and tobacco plants, estradiol-activated XVE can stimulate expression of a GFP reporter gene controlled by the target promoter, which consists of eight copies of the LexA operator fused upstream of the -46 35S minimal promoter. Upon induction by estradiol, GFP expression levels can be eightfold higher than that transcribed from a 35S promoter, whereas the uninduced controls have no detectable GFP transcripts, as monitored by Northern blot analysis. Neither toxic nor adverse physiological effects of the XVE system have been observed in transgenic Arabidopsis plants under all the conditions tested. The XVE system thus appears to be a reliable and efficient chemical-inducible system for regulating transgene expression in plants.


Journal ArticleDOI
TL;DR: Comparison of seed and ABA-inducible vegetative gene expression in wild-type and abi5-1 plants indicates that ABI5 regulates a subset of late embryogenesis–abundant genes during both developmental stages.
Abstract: The Arabidopsis abscisic acid (ABA)-insensitive abi5 mutants have pleiotropic defects in ABA response, including decreased sensitivity to ABA inhibition of germination and altered expression of some ABA-regulated genes. We isolated the ABI5 gene by using a positional cloning approach and found that it encodes a member of the basic leucine zipper transcription factor family. The previously characterized abi5-1 allele encodes a protein that lacks the DNA binding and dimerization domains required for ABI5 function. Analyses of ABI5 expression provide evidence for ABA regulation, cross-regulation by other ABI genes, and possibly autoregulation. Comparison of seed and ABA-inducible vegetative gene expression in wild-type and abi5-1 plants indicates that ABI5 regulates a subset of late embryogenesis-abundant genes during both developmental stages.

Journal ArticleDOI
TL;DR: AtERFs are factors that respond to extracellular signals to modulate GCC box–mediated gene expression positively or negatively, and are concluded that AtERF genes were differentially regulated by ethylene and by abiotic stress conditions.
Abstract: Ethylene-responsive element binding factors (ERFs) are members of a novel family of transcription factors that are specific to plants. A highly conserved DNA binding domain known as the ERF domain is the unique feature of this protein family. To characterize in detail this family of transcription factors, we isolated Arabidopsis cDNAs encoding five different ERF proteins (AtERF1 to AtERF5) and analyzed their structure, DNA binding preference, transactivation ability, and mRNA expression profiles. The isolated AtERFs were placed into three classes based on amino acid identity within the ERF domain, although all five displayed GCC box–specific binding activity. AtERF1, AtERF2, and AtERF5 functioned as activators of GCC box–dependent transcription in Arabidopsis leaves. By contrast, AtERF3 and AtERF4 acted as repressors that downregulated not only basal transcription levels of a reporter gene but also the transactivation activity of other transcription factors. The AtERF genes were differentially regulated by ethylene and by abiotic stress conditions, such as wounding, cold, high salinity, or drought, via ETHYLENE-INSENSITIVE2 (EIN2)–dependent or –independent pathways. Cycloheximide, a protein synthesis inhibitor, also induced marked accumulation of AtERF mRNAs. Thus, we conclude that AtERFs are factors that respond to extracellular signals to modulate GCC box–mediated gene expression positively or negatively.

Journal ArticleDOI
TL;DR: This work monitored gene-expression changes in Arabidopsis thaliana under 14 different SAR-inducing or SAR-repressing conditions using a DNA microarray and derived groups of genes with common regulation patterns, or regulons.
Abstract: Infected plants undergo transcriptional reprogramming during initiation of both local defence and systemic acquired resistance (SAR). We monitored gene-expression changes in Arabidopsis thaliana under 14 different SAR-inducing or SAR-repressing conditions using a DNA microarray representing approximately 25-30% of all A. thaliana genes. We derived groups of genes with common regulation patterns, or regulons. The regulon containing PR-1, a reliable marker gene for SAR in A. thaliana, contains known PR genes and novel genes likely to function during SAR and disease resistance. We identified a common promoter element in genes of this regulon that binds members of a plant-specific transcription factor family. Our results extend expression profiling to definition of regulatory networks and gene discovery in plants.

Journal ArticleDOI
22 Dec 2000-Cell
TL;DR: Transposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid levels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern and microarray hybridizations.

Journal ArticleDOI
26 May 2000-Cell
TL;DR: It is concluded that SHR functions upstream of SCR and participates in a radial signaling pathway, and ectopic expression of SHR results in supernumerary cell divisions and abnormal cell specification in the root meristem.

Journal ArticleDOI
TL;DR: Alternative splicing of mRNA precursors is a versatile mechanism of gene expression regulation that accounts for a considerable proportion of proteomic complexity in higher eukaryotes.

Journal ArticleDOI
01 Aug 2000-Immunity
TL;DR: Inhibition of BCL-6 function initiated changes indicative of plasmacytic differentiation, including decreased expression of c-Myc and increased expression of the cell cycle inhibitor p27kip1, which suggest that malignant transformation by B CL-6 involves inhibition of differentiation and enhanced proliferation.

Journal ArticleDOI
TL;DR: It is shown that dsRNA is effective as a specific inhibitor of the function of three genes in the mouse, namely maternally expressed c-mos in the oocyte and zygotically expressed E-cadherin or a GFP transgene in the preimplantation embryo.
Abstract: The use of double-stranded (ds) RNA is a powerful way of interfering with gene expression in a range of organisms, but doubts have been raised about whether it could be successful in mammals. Here, we show that dsRNA is effective as a specific inhibitor of the function of three genes in the mouse, namely maternally expressed c-mos in the oocyte and zygotically expressed E-cadherin or a GFP transgene in the preimplantation embryo. The phenotypes observed are the same as those reported for null mutants of the endogenous genes. These findings offer the opportunity to study development and gene regulation in normal and diseased cells.

Journal ArticleDOI
14 Jul 2000-Science
TL;DR: Orca3 overexpression resulted in enhanced expression of several metabolite biosynthetic genes and in increased accumulation of terpenoid indole alkaloids, which may link plant stress responses to changes in metabolism.
Abstract: Biosynthesis of many classes of secondary metabolites in plants is induced by the stress hormone jasmonate. The gene for ORCA3, a jasmonate-responsive APETALA2 (AP2)-domain transcription factor from Catharanthus roseus, was isolated by transferred DNA activation tagging. Orca3 overexpression resulted in enhanced expression of several metabolite biosynthetic genes and, consequently, in increased accumulation of terpenoid indole alkaloids. Regulation of metabolite biosynthetic genes by jasmonate-responsive AP2-domain transcription factors may link plant stress responses to changes in metabolism.

Journal ArticleDOI
TL;DR: It is proposed that loss of PTEN during malignant progression contributes to tumor expansion through the deregulation of Akt activity and HIF-1-regulated gene expression.
Abstract: In glioblastoma-derived cell lines, PTEN does not significantly alter apoptotic sensitivity or cause complete inhibition of DNA synthesis. However, in these cell lines PTEN regulates hypoxia- and IGF-1-induced angiogenic gene expression by regulating Akt activation of HIF-1 activity. Restoration of wild-type PTEN to glioblastoma cell lines lacking functional PTEN ablates hypoxia and IGF-1 induction of HIF-1-regulated genes. In addition, Akt activation leads to HIF-1alpha stabilization, whereas PTEN attenuates hypoxia-mediated HIF-1alpha stabilization. We propose that loss of PTEN during malignant progression contributes to tumor expansion through the deregulation of Akt activity and HIF-1-regulated gene expression.

Journal ArticleDOI
TL;DR: Caspase 8 acts as a tumor suppressor in neuroblastomas with amplification of the oncogene MYCN and is silenced through DNA methylation as well as through gene deletion.
Abstract: Caspase 8 is a cysteine protease regulated in both a death-receptor-dependent and -independent manner during apoptosis. Here, we report that the gene for caspase 8 is frequently inactivated in neuroblastoma, a childhood tumor of the peripheral nervous system. The gene is silenced through DNA methylation as well as through gene deletion. Complete inactivation of CASP8 occurred almost exclusively in neuroblastomas with amplification of the oncogene MYCN. Caspase 8-null neuroblastoma cells were resistant to death receptor- and doxorubicin-mediated apoptosis, deficits that were corrected by programmed expression of the enzyme. Thus, caspase 8 acts as a tumor suppressor in neuroblastomas with amplification of MYCN.