scispace - formally typeset
Search or ask a question

Showing papers on "Transcription factor published in 2005"


Journal ArticleDOI
09 Jun 2005-Nature
TL;DR: A mechanism through which c-Myc simultaneously activates E2F1 transcription and limits its translation, allowing a tightly controlled proliferative signal is revealed.
Abstract: MicroRNAs (miRNAs) are 21-23 nucleotide RNA molecules that regulate the stability or translational efficiency of target messenger RNAs. miRNAs have diverse functions, including the regulation of cellular differentiation, proliferation and apoptosis. Although strict tissue- and developmental-stage-specific expression is critical for appropriate miRNA function, mammalian transcription factors that regulate miRNAs have not yet been identified. The proto-oncogene c-MYC encodes a transcription factor that regulates cell proliferation, growth and apoptosis. Dysregulated expression or function of c-Myc is one of the most common abnormalities in human malignancy. Here we show that c-Myc activates expression of a cluster of six miRNAs on human chromosome 13. Chromatin immunoprecipation experiments show that c-Myc binds directly to this locus. The transcription factor E2F1 is an additional target of c-Myc that promotes cell cycle progression. We find that expression of E2F1 is negatively regulated by two miRNAs in this cluster, miR-17-5p and miR-20a. These findings expand the known classes of transcripts within the c-Myc target gene network, and reveal a mechanism through which c-Myc simultaneously activates E2F1 transcription and limits its translation, allowing a tightly controlled proliferative signal.

2,618 citations


Journal ArticleDOI
TL;DR: Examining the expression patterns of large gene families, it is found that they are often more similar than would be expected by chance, indicating that many gene families have been co-opted for specific developmental processes.
Abstract: Regulatory regions of plant genes tend to be more compact than those of animal genes, but the complement of transcription factors encoded in plant genomes is as large or larger than that found in those of animals. Plants therefore provide an opportunity to study how transcriptional programs control multicellular development. We analyzed global gene expression during development of the reference plant Arabidopsis thaliana in samples covering many stages, from embryogenesis to senescence, and diverse organs. Here, we provide a first analysis of this data set, which is part of the AtGenExpress expression atlas. We observed that the expression levels of transcription factor genes and signal transduction components are similar to those of metabolic genes. Examining the expression patterns of large gene families, we found that they are often more similar than would be expected by chance, indicating that many gene families have been co-opted for specific developmental processes.

2,510 citations


Journal ArticleDOI
TL;DR: The growing understanding of TGFbeta signaling through the Smad pathway provides general principles for how animal cells translate complex inputs into concrete behavior.
Abstract: Smad transcription factors lie at the core of one of the most versatile cytokine signaling pathways in metazoan biology-the transforming growth factor-beta (TGFbeta) pathway. Recent progress has shed light into the processes of Smad activation and deactivation, nucleocytoplasmic dynamics, and assembly of transcriptional complexes. A rich repertoire of regulatory devices exerts control over each step of the Smad pathway. This knowledge is enabling work on more complex questions about the organization, integration, and modulation of Smad-dependent transcriptional programs. We are beginning to uncover self-enabled gene response cascades, graded Smad response mechanisms, and Smad-dependent synexpression groups. Our growing understanding of TGFbeta signaling through the Smad pathway provides general principles for how animal cells translate complex inputs into concrete behavior.

2,333 citations


Journal ArticleDOI
01 Mar 2005-Immunity
TL;DR: Analysis of Foxp3 expression during thymic development suggests that this mechanism is not hard-wired but is dependent on TCR/MHC ligand interactions, and it is shown that expression ofFoxp3 is highly restricted to the subset alphabeta of T cells and, irrespective of CD25 expression, correlates with suppressor activity.

2,248 citations


Journal ArticleDOI
TL;DR: This work has shown that the PGC-1 coactivators play a critical role in the maintenance of glucose, lipid, and energy homeostasis and are likely involved in the pathogenic conditions such as obesity, diabetes, neurodegeneration, and cardiomyopathy.

1,993 citations


Journal ArticleDOI
18 Apr 2005-Oncogene
TL;DR: The p53 pathway responds to stresses that can disrupt the fidelity of DNA replication and cell division by activation of the p53 protein as a transcription factor that initiates a program of cell cycle arrest, cellular senescence or apoptosis.
Abstract: The p53 pathway responds to stresses that can disrupt the fidelity of DNA replication and cell division. A stress signal is transmitted to the p53 protein by post-translational modifications. This results in the activation of the p53 protein as a transcription factor that initiates a program of cell cycle arrest, cellular senescence or apoptosis. The transcriptional network of p53-responsive genes produces proteins that interact with a large number of other signal transduction pathways in the cell and a number of positive and negative autoregulatory feedback loops act upon the p53 response. There are at least seven negative and three positive feedback loops described here, and of these, six act through the MDM-2 protein to regulate p53 activity. The p53 circuit communicates with the Wnt-beta-catenin, IGF-1-AKT, Rb-E2F, p38 MAP kinase, cyclin-cdk, p14/19 ARF pathways and the cyclin G-PP2A, and p73 gene products. There are at least three different ubiquitin ligases that can regulate p53 in an autoregulatory manner: MDM-2, Cop-1 and Pirh-2. The meaning of this redundancy and the relative activity of each of these feedback loops in different cell types or stages of development remains to be elucidated. The interconnections between signal transduction pathways will play a central role in our understanding of cancer.

1,881 citations


Journal ArticleDOI
TL;DR: This work reviews the molecular basis for the specificity and versatility of signaling by the many ligands through this conceptually simple signal transduction mechanism of the TGF-β family.
Abstract: The TGF-β family comprises many structurally related differentiation factors that act through a heteromeric receptor complex at the cell surface and an intracellular signal transducing Smad complex. The receptor complex consists of two type II and two type I transmembrane serine/threonine kinases. Upon phosphorylation by the receptors, Smad complexes translocate into the nucleus, where they cooperate with sequence-specific transcription factors to regulate gene expression. The vertebrate genome encodes many ligands, fewer type II and type I receptors, and only a few Smads. In contrast to the perceived simplicity of the signal transduction mechanism with few Smads, the cellular responses to TGF-β ligands are complex and context dependent. This raises the question of how the specificity of the ligand-induced signaling is achieved. We review the molecular basis for the specificity and versatility of signaling by the many ligands through this conceptually simple signal transduction mechanism.

1,725 citations


Journal ArticleDOI
TL;DR: Depletion of VISA inhibits virus-triggered and RIG-I-mediated activation of IRF-3, NF-kappaB, and the IFN-beta promoter, suggesting that VISA plays a central role in virus- Triggered TLR3-independent IFn-beta signaling.

1,692 citations


Journal ArticleDOI
12 Aug 2005-Cell
TL;DR: Yorkie (Yki), the Drosophila ortholog of the mammalian transcriptional coactivator yes-associated protein (YAP), is identified as a missing link between Wts and transcriptional regulation and is a critical target of the Wts/Lats protein kinase and a potential oncogene.

1,621 citations


Journal ArticleDOI
14 Jul 2005-Nature
TL;DR: It is found that the miR-1 genes are direct transcriptional targets of muscle differentiation regulators including serum response factor, MyoD and Mef2, and a new algorithm for microRNA target identification that incorporates features of RNA structure and target accessibility is used.
Abstract: Gradients of signalling and transcription factors govern many aspects of embryogenesis, highlighting the need for spatiotemporal control of regulatory protein levels. MicroRNAs are phylogenetically conserved small RNAs that regulate the translation of target messenger RNAs, providing a mechanism for protein dose regulation. Here we show that microRNA-1-1 (miR-1-1) and miR-1-2 are specifically expressed in cardiac and skeletal muscle precursor cells. We found that the miR-1 genes are direct transcriptional targets of muscle differentiation regulators including serum response factor, MyoD and Mef2. Correspondingly, excess miR-1 in the developing heart leads to a decreased pool of proliferating ventricular cardiomyocytes. Using a new algorithm for microRNA target identification that incorporates features of RNA structure and target accessibility, we show that Hand2, a transcription factor that promotes ventricular cardiomyocyte expansion, is a target of miR-1. This work suggests that miR-1 genes titrate the effects of critical cardiac regulatory proteins to control the balance between differentiation and proliferation during cardiogenesis.

1,588 citations


Journal ArticleDOI
TL;DR: This Review focuses on the recent advances in the understanding of the regulation, mechanism of action and functions of NFAT proteins in T cells.
Abstract: Since the discovery of the first nuclear factor of activated T cells (NFAT) protein more than a decade ago, the NFAT family of transcription factors has grown to include five members. It has also become clear that NFAT proteins have crucial roles in the development and function of the immune system. In T cells, NFAT proteins not only regulate activation but also are involved in the control of thymocyte development, T-cell differentiation and self-tolerance. The functional versatility of NFAT proteins can be explained by their complex mechanism of regulation and their ability to integrate calcium signalling with other signalling pathways. This Review focuses on the recent advances in our understanding of the regulation, mechanism of action and functions of NFAT proteins in T cells.

Journal ArticleDOI
TL;DR: This review surveys knowledge about the molecular mechanism by which ERs regulate the expression of genes that do not contain EREs, and it gives examples of the ways in which the genomic and nongenomic actions of ERs on target genes converge.
Abstract: Estrogen receptors (ERs) act by regulating transcriptional processes. The classical mechanism of ER action involves estrogen binding to receptors in the nucleus, after which the receptors dimerize and bind to specific response elements known as estrogen response elements (EREs) located in the promoters of target genes. However, ERs can also regulate gene expression without directly binding to DNA. This occurs through protein-protein interactions with other DNA-binding transcription factors in the nucleus. In addition, membrane-associated ERs mediate nongenomic actions of estrogens, which can lead both to altered functions of proteins in the cytoplasm and to regulation of gene expression. The latter two mechanisms of ER action enable a broader range of genes to be regulated than the range that can be regulated by the classical mechanism of ER action alone. This review surveys our knowledge about the molecular mechanism by which ERs regulate the expression of genes that do not contain EREs, and it gives examples of the ways in which the genomic and nongenomic actions of ERs on target genes converge. Genomic and nongenomic actions of ERs that do not depend on EREs influence the physiology of many target tissues, and thus, increasing our understanding of the molecular mechanisms behind these actions is highly relevant for the development of novel drugs that target specific receptor actions.

Journal ArticleDOI
14 Nov 2005-Oncogene
TL;DR: Consistent with the notion that stress resistance is highly coupled with lifespan extension, activation of FOXO transcription factors in worms and flies increases longevity and suggests that FOXO factors play a tumor suppressor role in a variety of cancers.
Abstract: A wide range of human diseases, including cancer, has a striking age-dependent onset. However, the molecular mechanisms that connect aging and cancer are just beginning to be unraveled. FOXO transcription factors are promising candidates to serve as molecular links between longevity and tumor suppression. These factors are major substrates of the protein kinase Akt. In the presence of insulin and growth factors, FOXO proteins are relocalized from the nucleus to the cytoplasm and degraded via the ubiquitin-proteasome pathway. In the absence of growth factors, FOXO proteins translocate to the nucleus and upregulate a series of target genes, thereby promoting cell cycle arrest, stress resistance, or apoptosis. Stress stimuli also trigger the relocalization of FOXO factors into the nucleus, thus allowing an adaptive response to stress stimuli. Consistent with the notion that stress resistance is highly coupled with lifespan extension, activation of FOXO transcription factors in worms and flies increases longevity. Emerging evidence also suggests that FOXO factors play a tumor suppressor role in a variety of cancers. Thus, FOXO proteins translate environmental stimuli into changes in gene expression programs that may coordinate organismal longevity and tumor suppression.

Journal ArticleDOI
TL;DR: The biological and molecular functions of the NAC family are summarized, paying particular attention to the intricate regulation of NAC protein level and localization, and to the first indications of Nac participation in transcription factor networks.

Journal ArticleDOI
02 Dec 2005-Cell
TL;DR: It is shown that the differentiation of TE cells can be mimicked by overexpression of Caudal-related homeobox 2 (Cdx2), which is sufficient to generate proper trophoblast stem (TS) cells and suggests that reciprocal inhibition between lineage-specific transcription factors might be involved in the first differentiation event of mammalian development.

Journal ArticleDOI
TL;DR: By specific knockdown of Oct4 and Sox2 mRNA by RNA interference in embryonic stem cells, this work provides genetic evidence for a link between Oct4, Sox2, and the Nanog promoter, extending the understanding of the pluripotent genetic regulatory network within which the Sox2-Oct4 complex are at the top of the regulatory hierarchy.

Journal ArticleDOI
TL;DR: Several enzymes involved in the ubiquitination and deubiquitination of signalling proteins that mediate IKK activation through a degradation-independent mechanism are revealed.
Abstract: The transcription factor NF-kappaB (nuclear factor kappa enhancer binding protein) controls many processes, including immunity, inflammation and apoptosis. Ubiquitination regulates at least three steps in the NF-kappaB pathway: degradation of IkappaB (inhibitor of NF-kappaB), processing of NF-kappaB precursors, and activation of the IkappaB kinase (IKK). Recent studies have revealed several enzymes involved in the ubiquitination and deubiquitination of signalling proteins that mediate IKK activation through a degradation-independent mechanism.

Journal ArticleDOI
TL;DR: Antioxidant-specific gene induction, involved in xenobiotic metabolism, is mediated by the "ant antioxidant responsive element" (ARE) commonly found in the promoter region of such genes, but has not been found in plant Gst genes.
Abstract: Molecular oxygen (O2) is the premier biological electron acceptor that serves vital roles in fundamental cellular functions. However, with the beneficial properties of O2 comes the inadvertent formation of reactive oxygen species (ROS) such as superoxide (O2*-), hydrogen peroxide, and hydroxyl radical (OH*). If unabated, ROS pose a serious threat to or cause the death of aerobic cells. To minimize the damaging effects of ROS, aerobic organisms evolved non-enzymatic and enzymatic antioxidant defenses. The latter include catalases, peroxidases, superoxide dismutases, and glutathione S-transferases (GST). Cellular ROS-sensing mechanisms are not well understood, but a number of transcription factors that regulate the expression of antioxidant genes are well characterized in prokaryotes and in yeast. In higher eukaryotes, oxidative stress responses are more complex and modulated by several regulators. In mammalian systems, two classes of transcription factors, nuclear factor kB and activator protein-1, are involved in the oxidative stress response. Antioxidant-specific gene induction, involved in xenobiotic metabolism, is mediated by the "antioxidant responsive element" (ARE) commonly found in the promoter region of such genes. ARE is present in mammalian GST, metallothioneine-I and MnSod genes, but has not been found in plant Gst genes. However, ARE is present in the promoter region of the three maize catalase (Cat) genes. In plants, ROS have been implicated in the damaging effects of various environmental stress conditions. Many plant defense genes are activated in response to these conditions, including the three maize Cat and some of the superoxide dismutase (Sod) genes.

Journal ArticleDOI
TL;DR: Findings suggest that VND6 and VND7 genes are transcription switches for plant metaxylem and protoxylem vessel formation.
Abstract: Land plants evolved xylem vessels to conduct water and nutrients, and to support the plant. Microarray analysis with a newly established Arabidopsis in vitro xylem vessel element formation system and promoter analysis revealed the possible involvement of some plant-specific NAC-domain transcription factors in xylem formation. VASCULAR-RELATED NAC-DOMAIN6 (VND6) and VND7 can induce transdifferentiation of various cells into metaxylem- and protoxylem-like vessel elements, respectively, in Arabidopsis and poplar. A dominant repression of VND6 and VND7 specifically inhibits metaxylem and protoxylem vessel formation in roots, respectively. These findings suggest that these genes are transcription switches for plant metaxylem and protoxylem vessel formation.

Journal ArticleDOI
10 Mar 2005-Nature
TL;DR: The transcription factor IRF-5 is identified as a new, principal downstream regulator of the TLR–MyD88 signalling pathway and a potential target of therapeutic intervention to control harmful immune responses.
Abstract: The activation of Toll-like receptors (TLRs) is central to innate and adaptive immunity. All TLRs use the adaptor MyD88 for signalling, but the mechanisms underlying the MyD88-mediated gene induction programme are as yet not fully understood. Here, we demonstrate that the transcription factor IRF-5 is generally involved downstream of the TLR-MyD88 signalling pathway for gene induction of proinflammatory cytokines, such as interleukin-6 (IL-6), IL-12 and tumour-necrosis factor-alpha. In haematopoietic cells from mice deficient in the Irf5 gene (Irf5-/- mice), the induction of these cytokines by various TLR ligands is severely impaired, whereas interferon-alpha induction is normal. We also provide evidence that IRF-5 interacts with and is activated by MyD88 and TRAF6, and that TLR activation results in the nuclear translocation of IRF-5 to activate cytokine gene transcription. Consistently, Irf5-/- mice show resistance to lethal shock induced by either unmethylated DNA or lipopolysaccharide, which correlates with a marked decrease in the serum levels of proinflammatory cytokines. Thus, our study identifies IRF-5 as a new, principal downstream regulator of the TLR-MyD88 signalling pathway and a potential target of therapeutic intervention to control harmful immune responses.

Journal ArticleDOI
02 Dec 2005-Cell
TL;DR: The data indicate that miR-223 plays a crucial role during granulopoiesis and point to the NFI-A repression as an important molecular pathway mediating gene reprogramming in this cell lineage.

Journal ArticleDOI
TL;DR: This work provides genetic evidence in the mouse that precocious ETS expression in DRG sensory neurons perturbs axonal projections, the acquisition of terminal differentiation markers, and their dependence on neurotrophic support.
Abstract: Two ETS transcription factors of the Pea3 subfamily are induced in subpopulations of dorsal root ganglion (DRG) sensory and spinal motor neurons by target-derived factors. Their expression controls late aspects of neuronal differentiation such as target invasion and branching. Here, we show that the late onset of ETS gene expression is an essential requirement for normal sensory neuron differentiation. We provide genetic evidence in the mouse that precocious ETS expression in DRG sensory neurons perturbs axonal projections, the acquisition of terminal differentiation markers, and their dependence on neurotrophic support. Together, our findings indicate that DRG sensory neurons exhibit a temporal developmental switch that can be revealed by distinct responses to ETS transcription factor signaling at sequential steps of neuronal maturation.

Journal ArticleDOI
TL;DR: Principal advances in the understanding of the molecular mechanisms of Treg cell development and function are discussed with particular emphasis on the forkhead transcription factor Foxp3.
Abstract: The random generation of antigen receptors in developing lymphocytes results in a considerable risk of autoimmunity. Regulatory T cells (T(reg) cells) act in a dominant, trans-acting way to actively suppress immune activation and maintain immune tolerance. Here, we discuss the principal advances in our understanding of the molecular mechanisms of T(reg) cell development and function with particular emphasis on the forkhead transcription factor Foxp3. Accumulating evidence suggests that T(reg) cells represent a dedicated T cell lineage and that Foxp3 functions as the T(reg) cell lineage specification factor. The aggressive early-onset lymphoproliferative syndrome resulting from Foxp3 deficiency identifies T(reg) cells as vital mediators of immunological tolerance to self and Foxp3 as the mediator of the genetic mechanism of dominant tolerance.

Journal ArticleDOI
12 Aug 2005-Science
TL;DR: It is reported that a 14-3-3–binding protein, TAZ (transcriptional coactivator with PDZ-binding motif), coactivates Runx2- dependent gene transcription while repressing PPARγ-dependent gene transcription, indicating that TAZ functions as a molecular rheostat that modulates MSC differentiation.
Abstract: Mesenchymal stem cells (MSCs) are a pluripotent cell type that can differentiate into several distinct lineages. Two key transcription factors, Runx2 and peroxisome proliferator-activated receptor gamma (PPARgamma), drive MSCs to differentiate into either osteoblasts or adipocytes, respectively. How these two transcription factors are regulated in order to specify these alternate cell fates remains a pivotal question. Here we report that a 14-3-3-binding protein, TAZ (transcriptional coactivator with PDZ-binding motif), coactivates Runx2-dependent gene transcription while repressing PPARgamma-dependent gene transcription. By modulating TAZ expression in model cell lines, mouse embryonic fibroblasts, and primary MSCs in culture and in zebrafish in vivo, we observed alterations in osteogenic versus adipogenic potential. These results indicate that TAZ functions as a molecular rheostat that modulates MSC differentiation.

Journal ArticleDOI
TL;DR: The nuclear factor kB (NF-kB) comprises a family of transcription factors involved in the regulation of a wide variety of biological responses that play a key role in the development and progression of cancer such as proliferation, migration and apoptosis.
Abstract: The nuclear factor kB (NF-kB) comprises a family of transcription factors involved in the regulation of a wide variety of biological responses. NF-kB plays a well-known function in the regulation of immune responses and inflammation, but growing evidences support a major role in oncogenesis. NF-kB regulates the expression of genes involved in many processes that play a key role in the development and progression of cancer such as proliferation, migration and apoptosis. Aberrant or constitutive NF-kB activation has been detected in many human malignancies. In recent years, numerous studies have focused on elucidating the functional consequences of NF-kB activation as well as its signaling mechanisms. NF-kB has turned out to be an interesting therapeutic target for treatment of cancer.

Journal ArticleDOI
TL;DR: Compilations of theknown growth stimuli that promote increases in HIF abundance, of protein-protein interactions involving HIF, and of the known HIF effector genes are provided to aid in the identification of novel HIF target genes, design of oxygen-regulated gene therapy, and prediction of effects of future drugs targeting the HIF system.
Abstract: The hypoxia-inducible factor 1 (HIF-1) was initially identified as a transcription factor that regulated erythropoietin gene expression in response to a decrease in oxygen availability in kidney tissue. Subsequently, a family of oxygen-dependent protein hydroxylases was found to regulate the abundance and activity of three oxygen-sensitive HIFalpha subunits, which, as part of the HIF heterodimer, regulated the transcription of at least 70 different effector genes. In addition to responding to a decrease in tissue oxygenation, HIF is proactively induced, even under normoxic conditions, in response to stimuli that lead to cell growth, ultimately leading to higher oxygen consumption. The growing cell thus profits from an anticipatory increase in HIF-dependent target gene expression. Growth stimuli-activated signaling pathways that influence the abundance and activity of HIFs include pathways in which kinases are activated and pathways in which reactive oxygen species are liberated. These pathways signal to the HIF protein hydroxylases, as well as to HIF itself, by means of covalent or redox modifications and protein-protein interactions. The final point of integration of all of these pathways is the hypoxia-response element (HRE) of effector genes. Here, we provide comprehensive compilations of the known growth stimuli that promote increases in HIF abundance, of protein-protein interactions involving HIF, and of the known HIF effector genes. The consensus HRE derived from a comparison of the HREs of these HIF effectors will be useful for identification of novel HIF target genes, design of oxygen-regulated gene therapy, and prediction of effects of future drugs targeting the HIF system.

Journal ArticleDOI
TL;DR: Many of these defects resemble phenotypes previously observed in plants expressing viral suppressors of RNA silencing and plants with mutations in genes important for miRNA biogenesis or function, providing a molecular rationale for Phenotypes previously associated with more general disruptions of miRNA function.
Abstract: The phytohormone auxin plays critical roles during plant growth, many of which are mediated by the auxin response transcription factor (ARF) family. MicroRNAs (miRNAs), endogenous 21-nucleotide riboregulators, target several mRNAs implicated in auxin responses. miR160 targets ARF10 , ARF16 , and ARF17 , three of the 23 Arabidopsis thaliana ARF genes. Here, we describe roles of miR160-directed ARF17 posttranscriptional regulation. Plants expressing a miRNA-resistant version of ARF17 have increased ARF17 mRNA levels and altered accumulation of auxin-inducible GH3 -like mRNAs, YDK1/GH3.2 , GH3.3 , GH3.5 , and DFL1/GH3.6 , which encode auxin-conjugating proteins. These expression changes correlate with dramatic developmental defects, including embryo and emerging leaf symmetry anomalies, leaf shape defects, premature inflorescence development, altered phyllotaxy along the stem, reduced petal size, abnormal stamens, sterility, and root growth defects. These defects demonstrate the importance of miR160-directed ARF17 regulation and implicate ARF17 as a regulator of GH3 -like early auxin response genes. Many of these defects resemble phenotypes previously observed in plants expressing viral suppressors of RNA silencing and plants with mutations in genes important for miRNA biogenesis or function, providing a molecular rationale for phenotypes previously associated with more general disruptions of miRNA function.

Journal ArticleDOI
TL;DR: The evolutionary history of the MYB-bHLH-WD40 protein complex is reviewed and its role in generating plant epidermal cellular diversity is reviewed.

Journal ArticleDOI
TL;DR: Bone morphogenetic proteins, members of the transforming growth factor-beta (TGF-beta) superfamily, bind to two different serine/threonine kinase receptors, and mediate their signals through Smad-dependent and Smad -independent pathways.

Journal ArticleDOI
TL;DR: It is shown that expression of the intact AREB1 gene on its own is insufficient to lead to expression of downstream genes under normal growth conditions, and data suggest that AREB 1 regulates novel ABRE-dependent ABA signaling that enhances drought tolerance in vegetative tissues.
Abstract: ABSCISIC ACID-RESPONSIVE ELEMENT BINDING PROTEIN1 (AREB1) (i.e., ABF2) is a basic domain/leucine zipper transcription factor that binds to the abscisic acid (ABA)-responsive element (ABRE) motif in the promoter region of ABA-inducible genes. Here, we show that expression of the intact AREB1 gene on its own is insufficient to lead to expression of downstream genes under normal growth conditions. To overcome the masked transactivation activity of AREB1, we created an activated form of AREB1 (AREB1DeltaQT). AREB1DeltaQT-overexpressing plants showed ABA hypersensitivity and enhanced drought tolerance, and eight genes with two or more ABRE motifs in the promoter regions in two groups were greatly upregulated: late embryogenesis abundant class genes and ABA- and drought stress-inducible regulatory genes. By contrast, an areb1 null mutant and a dominant loss-of-function mutant of AREB1 (AREB1:RD) with a repression domain exhibited ABA insensitivity. Furthermore, AREB1:RD plants displayed reduced survival under dehydration, and three of the eight greatly upregulated genes were downregulated, including genes for linker histone H1 and AAA ATPase, which govern gene expression and multiple cellular activities through protein folding, respectively. Thus, these data suggest that AREB1 regulates novel ABRE-dependent ABA signaling that enhances drought tolerance in vegetative tissues.