scispace - formally typeset
Search or ask a question
Institution

Indiana University

EducationBloomington, Indiana, United States
About: Indiana University is a education organization based out in Bloomington, Indiana, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 64480 authors who have published 150058 publications receiving 6392902 citations. The organization is also known as: Indiana University system & indiana.edu.


Papers
More filters
Journal ArticleDOI
31 May 2012-Nature
TL;DR: In this article, the authors used genetic lineage tracing to show that resident nonmyocytes in the murine heart can be reprogrammed into cardiomyocyte-like cells in vivo by local delivery of GMT after coronary ligation.
Abstract: The reprogramming of adult cells into pluripotent cells or directly into alternative adult cell types holds great promise for regenerative medicine. We reported previously that cardiac fibroblasts, which represent 50% of the cells in the mammalian heart, can be directly reprogrammed to adult cardiomyocyte-like cells in vitro by the addition of Gata4, Mef2c and Tbx5 (GMT). Here we use genetic lineage tracing to show that resident non-myocytes in the murine heart can be reprogrammed into cardiomyocyte-like cells in vivo by local delivery of GMT after coronary ligation. Induced cardiomyocytes became binucleate, assembled sarcomeres and had cardiomyocyte-like gene expression. Analysis of single cells revealed ventricular cardiomyocyte-like action potentials, beating upon electrical stimulation, and evidence of electrical coupling. In vivo delivery of GMT decreased infarct size and modestly attenuated cardiac dysfunction up to 3 months after coronary ligation. Delivery of the pro-angiogenic and fibroblast-activating peptide, thymosin b4, along with GMT, resulted in further improvements in scar area and cardiac function. These findings demonstrate that cardiac fibroblasts can be reprogrammed into cardiomyocyte-like cells in their native environment for potential regenerative purposes. Heart failure affects over 14 million people worldwide and is a leading cause of death in adults and in children. Because postnatal cardiomyocytes (CMs) have little or no regenerative capacity, therapies are limited at present. The introduction of exogenous stem-cell-derived CMs holds promise, but also challenges, including delivery, integration, rejection and cellular maturation 1–3 . Reprogramming adult fibroblasts into induced pluripotent stem cells (iPSCs) that are similar to embryonic stem cells addresses some issues 4–6 , but others, including efficient directed differentiation into CMs and effective delivery, remain. A new generation of reprogramming technology involves transdifferentiating one adult somatic cell type directly into another 7–11 . We reported direct reprogramming of fibroblasts into CM-like cells in vitro by expressing three transcription factors: Gata4, Mef2c and Tbx5 (GMT) 7 . As observed in reprogramming to iPSCs, the percentage of fibroblast cells fully reprogrammed to beating CMs in vitro was small, but far more were partially reprogrammed, much like preiPSCs that can become fully pluripotent with additional stimuli 12 . We posited that cardiac fibroblasts may reprogram more fully in vivo in their native environment, which might promote survival, maturation, and coupling with neighbouring cells. If so, the vast pool of cardiac fibroblasts in the heart could serve as an endogenous source of new CMs for regenerative therapy.

1,195 citations

Journal ArticleDOI
TL;DR: It was determined that granulocyte-macrophage, erythroid, and multipotential progenitor cells remained functionally viable in cord blood untreated except for addition of anticoagulant for at least 3 days at 4 degrees C or 25 degrees C (room temperature), though not at 37 degrees C, implying that these cells could be satisfactorily studied and used or cryopreserved for therapy.
Abstract: The purpose of this study was to evaluate human umbilical cord blood as an alternative to bone marrow in the provision of transplantable stem/progenitor cells for hematopoietic reconstitution Although no direct quantitative assay for human hematopoietic repopulating cells is at present available, the granulocyte-macrophage progenitor cell (CFU-GM) assay has been used with success as a valid indicator of engrafting capability We examined greater than 100 collections of human umbilical cord blood for their content of nucleated cells and granulocyte-macrophage, erythroid (BFU-E), and multipotential (CFU-GEMM) progenitor cells, in many cases both before and after cryopreservation First it was determined that granulocyte-macrophage, erythroid, and multipotential progenitor cells remained functionally viable in cord blood untreated except for addition of anticoagulant for at least 3 days at 4 degrees C or 25 degrees C (room temperature), though not at 37 degrees C, implying that these cells could be satisfactorily studied and used or cryopreserved for therapy after transport of cord blood by overnight air freight carriage from a remote obstetrical service Granulocyte-macrophage progenitor cells from cord blood so received responded normally to stimulation by purified recombinant preparations of granulocyte-macrophage, granulocyte, and macrophage colony-stimulating factors and interleukin 3 The salient finding, based on analysis of 101 cord blood collections, is that the numbers of progenitor cells present in the low-density (less than 1077 gm/ml) fraction after Ficoll/Hypaque separation typically fell within the range that has been reported for successful engraftment by bone marrow cells Another observation of practical importance is that procedures to remove erythrocytes or granulocytes prior to freezing, and washing of thawed cells before plating, entailed large losses of progenitor cells, the yield of unwashed progenitor cells from unfractionated cord blood being many times greater The provisional inference is that human umbilical cord blood from a single individual is typically a sufficient source of cells for autologous (syngeneic) and for major histocompatibility complex-matched allogeneic hematopoietic reconstitution

1,192 citations

Journal ArticleDOI
30 Oct 2019-Nature
TL;DR: Treatment of KRASG 12C-mutant cancer cells with the KRAS(G12C) inhibitor AMG 510 leads to durable response in mice, and anti-tumour activity in patients suggests that AMG510 could be effective in patients for whom treatments are currently lacking.
Abstract: KRAS is the most frequently mutated oncogene in cancer and encodes a key signalling protein in tumours1,2. The KRAS(G12C) mutant has a cysteine residue that has been exploited to design covalent inhibitors that have promising preclinical activity3–5. Here we optimized a series of inhibitors, using novel binding interactions to markedly enhance their potency and selectivity. Our efforts have led to the discovery of AMG 510, which is, to our knowledge, the first KRAS(G12C) inhibitor in clinical development. In preclinical analyses, treatment with AMG 510 led to the regression of KRASG12C tumours and improved the anti-tumour efficacy of chemotherapy and targeted agents. In immune-competent mice, treatment with AMG 510 resulted in a pro-inflammatory tumour microenvironment and produced durable cures alone as well as in combination with immune-checkpoint inhibitors. Cured mice rejected the growth of isogenic KRASG12D tumours, which suggests adaptive immunity against shared antigens. Furthermore, in clinical trials, AMG 510 demonstrated anti-tumour activity in the first dosing cohorts and represents a potentially transformative therapy for patients for whom effective treatments are lacking. Treatment of KRASG12C-mutant cancer cells with the KRAS(G12C) inhibitor AMG 510 leads to durable response in mice, and anti-tumour activity in patients suggests that AMG 510 could be effective in patients for whom treatments are currently lacking.

1,191 citations

Journal ArticleDOI
TL;DR: The number of well-supported cases of transfer from both prokaryotes and eukaryotes, many with significant functional implications, is now expanding rapidly and major recent trends include the important role of HGT in adaptation to certain specialized niches and the highly variable impact of H GT in different lineages.
Abstract: Horizontal gene transfer (HGT; also known as lateral gene transfer) has had an important role in eukaryotic genome evolution, but its importance is often overshadowed by the greater prevalence and our more advanced understanding of gene transfer in prokaryotes. Recurrent endosymbioses and the generally poor sampling of most nuclear genes from diverse lineages have also complicated the search for transferred genes. Nevertheless, the number of well-supported cases of transfer from both prokaryotes and eukaryotes, many with significant functional implications, is now expanding rapidly. Major recent trends include the important role of HGT in adaptation to certain specialized niches and the highly variable impact of HGT in different lineages.

1,185 citations

Journal ArticleDOI
TL;DR: A common representation is offered that frames cultural services, along with all ES, by the relative contribution of relevant ecological structures and functions and by applicable social evaluation approaches, which provides a foundation for merging ecological and social science epistemologies to define and integrate cultural services better within the broader ES framework.
Abstract: Cultural ecosystem services (ES) are consistently recognized but not yet adequately defined or integrated within the ES framework. A substantial body of models, methods, and data relevant to cultural services has been developed within the social and behavioral sciences before and outside of the ES approach. A selective review of work in landscape aesthetics, cultural heritage, outdoor recreation, and spiritual significance demonstrates opportunities for operationally defining cultural services in terms of socioecological models, consistent with the larger set of ES. Such models explicitly link ecological structures and functions with cultural values and benefits, facilitating communication between scientists and stakeholders and enabling economic, multicriterion, deliberative evaluation and other methods that can clarify tradeoffs and synergies involving cultural ES. Based on this approach, a common representation is offered that frames cultural services, along with all ES, by the relative contribution of relevant ecological structures and functions and by applicable social evaluation approaches. This perspective provides a foundation for merging ecological and social science epistemologies to define and integrate cultural services better within the broader ES framework.

1,184 citations


Authors

Showing all 64884 results

NameH-indexPapersCitations
Frank B. Hu2501675253464
Stuart H. Orkin186715112182
Bruce M. Spiegelman179434158009
David R. Williams1782034138789
D. M. Strom1763167194314
Markus Antonietti1761068127235
Lei Jiang1702244135205
Brenda W.J.H. Penninx1701139119082
Nahum Sonenberg167647104053
Carl W. Cotman165809105323
Yang Yang1642704144071
Jaakko Kaprio1631532126320
Ralph A. DeFronzo160759132993
Gavin Davies1592036149835
Tyler Jacks158463115172
Network Information
Related Institutions (5)
University of Pennsylvania
257.6K papers, 14.1M citations

95% related

University of Washington
305.5K papers, 17.7M citations

94% related

Columbia University
224K papers, 12.8M citations

94% related

Yale University
220.6K papers, 12.8M citations

94% related

University of Minnesota
257.9K papers, 11.9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023127
2022694
20217,273
20207,310
20196,943
20186,496