scispace - formally typeset
Search or ask a question
Institution

Manchester Metropolitan University

EducationManchester, Manchester, United Kingdom
About: Manchester Metropolitan University is a education organization based out in Manchester, Manchester, United Kingdom. It is known for research contribution in the topics: Population & Context (language use). The organization has 5435 authors who have published 16202 publications receiving 442561 citations. The organization is also known as: Manchester Polytechnic & MMU.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors explore the advantages of the introduction of the SDGs into teaching and suggest that it can catalyse the engagement of students in Higher Education Institutions (HEI) with the concepts of sustainability.

276 citations

Journal ArticleDOI
TL;DR: It is demonstrated that chronic exposure to oligosaccharides of hyaluronan is essential for cell proliferation, indicating that short‐term immediate early‐gene signalling is insufficient to elicit the proliferation of endothelial cells.
Abstract: The degradation products of hyaluronan are known to stimulate endothelial-cell proliferation and to promote neovascularization associated with angiogenesis, whilst native high-molecular-weight hyaluronan is inhibitory to these processes. To investigate the cellular signalling pathways coupled to hyaluronan-induced responses in angiogenesis, we have analyzed early-response gene expression in vitro, in cultured bovine aortic endothelial cells. Angiogenic oligosaccharides of hyaluronan induced rapid transient up-regulation of the immediate early genes c-fos, c-jun, jun-B, Krox-20 and Krox-24. In contrast, native hyaluronan when used alone failed to elicit a significant change in expression of any of the genes tested, and when used in combination with angiogenic oligosaccharides of hyaluronan, gave a dose-dependent inhibition of induced gene expression. However, prior addition of angiogenic hyaluronan, as little as one minute before addition of high-molecular-weight hyaluronan, abrogated this inhibition, suggesting that positive or negative responses associated with hyaluronan signalling are integrated at a very early stage following receptor binding. Conversely, prior addition of high-molecular-weight hyaluronan led to an irreversible block in gene expression and proliferative response. These data are consistent with native hyaluronan antagonizing the angiogenic response in part by blocking a signalling cascade at or immediately following ligand-receptor interaction. Finally, we demonstrated that chronic exposure to oligosaccharides of hyaluronan is essential for cell proliferation, indicating that short-term immediate early-gene signalling is insufficient to elicit the proliferation of endothelial cells.

276 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive review of the literature and develop a novel framework in order to tackle the barriers and challenges to operationalize and monitor the implementation of the SDGs.

276 citations

Journal ArticleDOI
TL;DR: In this article, a new application in the form of a CQD-based hybrid as an excellent electrode material for supercapacitors is reported for the first time, which is fabricated by a facile chemical oxidation method following which they are thermally reduced, and further decorated with RuO2 to obtain the composites.
Abstract: Carbon quantum dots (CQDs) due to their unique properties have recently attracted extensive attention from researchers in many fields. In the present work, a new application in the form of a CQD-based hybrid as an excellent electrode material for supercapacitors is reported for the first time. The CQDs are fabricated by a facile chemical oxidation method following which they are thermally reduced, and further decorated with RuO2 to obtain the composites. The hybrid exhibits a specific capacitance of 460 F g−1 at an ultrahigh current density of 50 A g−1 (41.9 wt% Ru loading), and excellent rate capability (88.6, 84.2, and 77.4% of capacity retention rate at 10, 20, and 50 A g−1 compared with 1 A g−1, respectively). Surprisingly, the hybrid shows exceptional cycling stability with 96.9% capacity retention over 5000 cycles at 5 A g−1. Such remarkable electrochemical performances can be primarily ascribed to the significantly enhanced utilization of RuO2 achieved by the efficient dispersion of tiny reduced CQDs and the formation of a CQD-based hybrid network structure that can facilitate the fast charge transport and ionic motion during the charge–discharge process. Additionally, the contact resistance at the interface between active materials and current collectors is concluded to be a key factor in determining the performance of the hybrid. These results above demonstrate the great potential of CQD-based hybrid materials in the development of high-performance electrode materials for supercapacitors.

275 citations

Journal ArticleDOI
TL;DR: In this paper, a set of qualitative case studies were used in higher education institutions across seven countries (Brazil, Serbia, Latvia, South Africa, Spain, Syria, UK) to examine the extent to which transformation and learning on matters related to sustainable development may be integrated.

275 citations


Authors

Showing all 5608 results

NameH-indexPapersCitations
David T. Felson153861133514
João Carvalho126127877017
Andrew M. Jones10376437253
Michael C. Carroll10039934818
Mark Conner9837947672
Richard P. Bentall9443130580
Michael Wooldridge8754350675
Lina Badimon8668235774
Ian Parker8543228166
Kamaruzzaman Sopian8498925293
Keith Davids8460425038
Richard Baker8351422970
Joan Montaner8048922413
Stuart Robert Batten7832524097
Craig E. Banks7756927520
Network Information
Related Institutions (5)
University of Exeter
50.6K papers, 1.7M citations

93% related

University of Leeds
101.8K papers, 3.6M citations

93% related

University of Sheffield
102.9K papers, 3.9M citations

93% related

University of Manchester
168K papers, 6.4M citations

93% related

Cardiff University
82.6K papers, 3M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202350
2022471
20211,600
20201,341
20191,110
20181,076