scispace - formally typeset
Search or ask a question
Institution

Rutgers University

EducationNew Brunswick, New Jersey, United States
About: Rutgers University is a education organization based out in New Brunswick, New Jersey, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 68736 authors who have published 159418 publications receiving 6713860 citations. The organization is also known as: Rutgers, The State University of New Jersey & Rutgers.


Papers
More filters
Journal ArticleDOI
TL;DR: HyperFace as discussed by the authors combines face detection, landmarks localization, pose estimation and gender recognition using deep convolutional neural networks (CNNs) and achieves significant improvement in performance by fusing intermediate layers of a deep CNN using a separate CNN followed by a multi-task learning algorithm that operates on the fused features.
Abstract: We present an algorithm for simultaneous face detection, landmarks localization, pose estimation and gender recognition using deep convolutional neural networks (CNN). The proposed method called, HyperFace, fuses the intermediate layers of a deep CNN using a separate CNN followed by a multi-task learning algorithm that operates on the fused features. It exploits the synergy among the tasks which boosts up their individual performances. Additionally, we propose two variants of HyperFace: (1) HyperFace-ResNet that builds on the ResNet-101 model and achieves significant improvement in performance, and (2) Fast-HyperFace that uses a high recall fast face detector for generating region proposals to improve the speed of the algorithm. Extensive experiments show that the proposed models are able to capture both global and local information in faces and performs significantly better than many competitive algorithms for each of these four tasks.

1,218 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: AttnGAN as mentioned in this paper proposes an attentional generative network to synthesize fine-grained details at different sub-regions of the image by paying attentions to the relevant words in the natural language description.
Abstract: In this paper, we propose an Attentional Generative Adversarial Network (AttnGAN) that allows attention-driven, multi-stage refinement for fine-grained text-to-image generation. With a novel attentional generative network, the AttnGAN can synthesize fine-grained details at different sub-regions of the image by paying attentions to the relevant words in the natural language description. In addition, a deep attentional multimodal similarity model is proposed to compute a fine-grained image-text matching loss for training the generator. The proposed AttnGAN significantly outperforms the previous state of the art, boosting the best reported inception score by 14.14% on the CUB dataset and 170.25% on the more challenging COCO dataset. A detailed analysis is also performed by visualizing the attention layers of the AttnGAN. It for the first time shows that the layered attentional GAN is able to automatically select the condition at the word level for generating different parts of the image.

1,217 citations

Journal ArticleDOI
TL;DR: A review of the methods for determining the behavior of solids whose properties vary randomly at the microscopic level, with principal attention to systems having composition variation on a well-defined structure (random "alloys") can be found in this paper.
Abstract: We review the methods which have been developed over the past several years to determine the behavior of solids whose properties vary randomly at the microscopic level, with principal attention to systems having composition variation on a well-defined structure (random "alloys"). We begin with a survey of the various elementary excitations and put the dynamics of electrons, phonons, magnons, and excitons into one common descriptive Hamiltonian; we then review the use of double-time thermodynamic Green's functions to determine the experimental properties of systems. Next we discuss these aspects of the problem which derive from the statistical specification of the microscopic parameters; we examine what information can and cannot be obtained from averaged Green's functions. The central portion of the review concerns methods for calculating the averaged Green's function to successively better approximation, including various self-consistent methods, and higher-order cluster effects. The last part of the review presents a comparison of theory with the experimental results of a variety of properties---optical, electronic, magnetic, and neutron scattering. An epilogue calls attention to the similarity between these problems and those of other fields where random material heterogeneity has played an essential role.

1,213 citations

Journal ArticleDOI
TL;DR: In this article, the existence of a smooth control-Lyapunov function implies smooth stabilizability, and the result is extended to real-analytic and rational cases as well.

1,210 citations

Journal ArticleDOI
TL;DR: This work quantified the negative correlation between these two networks in 26 subjects, during active (Eriksen flanker task) and resting state scans, and found that the strength of the correlation between the two networks varies across individuals.

1,204 citations


Authors

Showing all 69437 results

NameH-indexPapersCitations
Salim Yusuf2311439252912
Daniel Levy212933194778
Eugene V. Koonin1991063175111
Eric Boerwinkle1831321170971
David L. Kaplan1771944146082
Derek R. Lovley16858295315
Mark Gerstein168751149578
Gang Chen1673372149819
Hongfang Liu1662356156290
Robert Stone1601756167901
Mark E. Cooper1581463124887
Michael B. Sporn15755994605
Cumrun Vafa15750988515
Wolfgang Wagner1562342123391
David M. Sabatini155413135833
Network Information
Related Institutions (5)
University of Minnesota
257.9K papers, 11.9M citations

97% related

Cornell University
235.5K papers, 12.2M citations

97% related

University of Washington
305.5K papers, 17.7M citations

97% related

Columbia University
224K papers, 12.8M citations

97% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023274
20221,029
20218,252
20208,150
20197,398
20186,594