scispace - formally typeset
Search or ask a question
Institution

Sungkyunkwan University

EducationSeoul, South Korea
About: Sungkyunkwan University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Thin film & Graphene. The organization has 28229 authors who have published 56428 publications receiving 1352733 citations. The organization is also known as: 성균관대학교.


Papers
More filters
Journal ArticleDOI
TL;DR: The Second International Consensus Conference on Laparoscopic Liver Resections (LLR) was held in Morioka, Japan, from October 4 to 6, 2014 to evaluate the current status of laparoscopic liver surgery and to provide recommendations to aid its future development.
Abstract: The use of laparoscopy for liver surgery is increasing rapidly. The Second International Consensus Conference on Laparoscopic Liver Resections (LLR) was held in Morioka, Japan, from October 4 to 6, 2014 to evaluate the current status of laparoscopic liver surgery and to provide recommendations to aid its future development. Seventeen questions were addressed. The first 7 questions focused on outcomes that reflect the benefits and risks of LLR. These questions were addressed using the Zurich-Danish consensus conference model in which the literature and expert opinion were weighed by a 9-member jury, who evaluated LLR outcomes using GRADE and a list of comparators. The jury also graded LLRs by the Balliol Classification of IDEAL. The jury concluded that MINOR LLRs had become standard practice (IDEAL 3) and that MAJOR liver resections were still innovative procedures in the exploration phase (IDEAL 2b). Continued cautious introduction of MAJOR LLRs was recommended. All of the evidence available for scrutiny was of LOW quality by GRADE, which prompted the recommendation for higher quality evaluative studies. The last 10 questions focused on technical questions and the recommendations were based on literature review and expert panel opinion. Recommendations were made regarding preoperative evaluation, bleeding controls, transection methods, anatomic approaches, and equipment. Both experts and jury recognized the need for a formal structure of education for those interested in performing major laparoscopic LLR because of the steep learning curve.

1,064 citations

Journal ArticleDOI
TL;DR: In this paper, an inverted MAPbI3 planar hybrid solar cells with 18.1% average power conversion efficiency was fabricated by depositing dense pinhole-free MAPBI3 perovskite on a PEDOT:PSS/ITO substrate via a single-step spin-coating of solubility controlled MAPI3 solution.
Abstract: Hysteresis-less inverted ITO/PEDOT:PSS/CH3NH3PbI3 (MAPbI3)/PCBM/Au planar hybrid solar cells with 18.1% average power conversion efficiency irrespective of the scan rate were fabricated by depositing dense pinhole-free MAPbI3 perovskite on a PEDOT:PSS/ITO substrate via a single-step spin-coating of solubility controlled MAPbI3 solution. The conductivities of PEDOT:PSS, PCBM, poly(triaryl amine) (PTAA):tert-butylpyrridne (tBP) + Li-bis(trifluoromethanesulfonyl)imide (Li–TFSI), MAPbI3, and TiO2 were 0.014, 0.016, 0.034, 0.015, and 0.00006 mS cm−1, respectively. The average PL lifetimes (τav) of the inverted and normal cell were 1.277 and 1.94 ns, respectively. The diffusion coefficient (Dn) and charge carrier lifetime (τn) for the inverted MAPbI3 planar hybrid solar cells were increased by 1.14-fold and 1.1-fold, respectively, compared with the conventional FTO/TiO2/MAPbI3/PTAA:tBP + Li–TFSI/Au planar hybrid cells. Hence, the inverted MAPbI3 planar hybrid solar cells exhibited better power conversion efficiency and stability than the conventional MAPbI3 cells because (i) the electron extraction from MAPbI3 to the electron conductor was improved because the electron conductivity of PCBM is higher than that of TiO2; (ii) the EQE value was increased by the better charge injection/separation efficiency between MAPbI3 and PCBM, and by the higher charge collection efficiency than the conventional cell; (iii) the fill factor is improved by the increased Dn and τn; and (iv) the air and humidity stability is improved by the absence of corrosive additives in the device architecture and the hydrophobicity of the PCBM top layer. The reduced current density–voltage (J–V) hysteresis with respect to the scan rate and scan direction in the inverted planar hybrid solar cells could be attributed to a more balanced electron flux (Je) and hole flux (Jh), and a reduced number of surface traps.

1,056 citations

Journal ArticleDOI
Luis Paz-Ares1, M. Dvorkin, Y. Chen2, Niels Reinmuth  +224 moreInstitutions (10)
TL;DR: First-line durvalumab plus platinum-etoposide significantly improved overall survival in patients with ES-SCLC versus a clinically relevant control group and safety findings were consistent with the known safety profiles of all drugs received.

1,043 citations

Journal ArticleDOI
12 Apr 2013-Science
TL;DR: The ability of these ultrathin, mechanically compliant, biocompatible devices to afford minimally invasive operation in the soft tissues of the mammalian brain foreshadow applications in other organ systems, with potential for broad utility in biomedical science and engineering.
Abstract: Successful integration of advanced semiconductor devices with biological systems will accelerate basic scientific discoveries and their translation into clinical technologies. In neuroscience generally, and in optogenetics in particular, the ability to insert light sources, detectors, sensors, and other components into precise locations of the deep brain yields versatile and important capabilities. Here, we introduce an injectable class of cellular-scale optoelectronics that offers such features, with examples of unmatched operational modes in optogenetics, including completely wireless and programmed complex behavioral control over freely moving animals. The ability of these ultrathin, mechanically compliant, biocompatible devices to afford minimally invasive operation in the soft tissues of the mammalian brain foreshadow applications in other organ systems, with potential for broad utility in biomedical science and engineering.

1,006 citations

Journal ArticleDOI
14 Aug 2013-ACS Nano
TL;DR: This work demonstrates field-effect transistors with MoS2 channels, hBN dielectric, and graphene gate electrodes, and takes advantage of the mechanical strength and flexibility of these materials to create flexible and transparent FETs that show unchanged performance up to 1.5% strain.
Abstract: Atomically thin forms of layered materials, such as conducting graphene, insulating hexagonal boron nitride (hBN), and semiconducting molybdenum disulfide (MoS2), have generated great interests recently due to the possibility of combining diverse atomic layers by mechanical “stacking” to create novel materials and devices. In this work, we demonstrate field-effect transistors (FETs) with MoS2 channels, hBN dielectric, and graphene gate electrodes. These devices show field-effect mobilities of up to 45 cm2/Vs and operating gate voltage below 10 V, with greatly reduced hysteresis. Taking advantage of the mechanical strength and flexibility of these materials, we demonstrate integration onto a polymer substrate to create flexible and transparent FETs that show unchanged performance up to 1.5% strain. These heterostructure devices consisting of ultrathin two-dimensional (2D) materials open up a new route toward high-performance flexible and transparent electronics.

1,004 citations


Authors

Showing all 28506 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Hyun-Chul Kim1764076183227
Yongsun Kim1562588145619
David J. Mooney15669594172
Jongmin Lee1502257134772
Byung-Sik Hong1461557105696
Inkyu Park1441767109433
Y. Choi141163198709
Kazunori Kataoka13890870412
E. J. Corey136137784110
Pasi A. Jänne13668589488
Suyong Choi135149597053
Intae Yu134137289870
Tae Jeong Kim132142093959
Anders Hagfeldt12960079912
Network Information
Related Institutions (5)
Korea University
82.4K papers, 1.8M citations

98% related

Hanyang University
58.8K papers, 1.1M citations

98% related

Seoul National University
138.7K papers, 3.7M citations

97% related

Kyungpook National University
42.1K papers, 834.6K citations

97% related

Yonsei University
106.1K papers, 2.2M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023103
2022588
20214,342
20204,248
20194,124
20183,826