scispace - formally typeset
Open AccessJournal ArticleDOI

Atomically thin MoS2: a new direct-gap semiconductor

TLDR
The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N=1,2,…,6 S-Mo-S monolayers have been investigated by optical spectroscopy and the effect of quantum confinement on the material's electronic structure is traced.
Abstract
The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N=1,2,…,6 S-Mo-S monolayers have been investigated by optical spectroscopy Through characterization by absorption, photoluminescence, and photoconductivity spectroscopy, we trace the effect of quantum confinement on the material's electronic structure With decreasing thickness, the indirect band gap, which lies below the direct gap in the bulk material, shifts upwards in energy by more than 06 eV This leads to a crossover to a direct-gap material in the limit of the single monolayer Unlike the bulk material, the MoS₂ monolayer emits light strongly The freestanding monolayer exhibits an increase in luminescence quantum efficiency by more than a factor of 10⁴ compared with the bulk material

read more

Citations
More filters
Journal ArticleDOI

Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes.

TL;DR: The strain induced change in projected orbitals energy of Mo and the coupling between the Mo atom d orbital and the S atom p orbital are analyzed to explain the strong strain effect on the band gap and magnetic properties.
Journal ArticleDOI

Recent developments in emerging two-dimensional materials and their applications

TL;DR: In this paper, a review of 2D materials is presented, along with their advantages and disadvantages, and some effective device-fabrication approaches, such as heterostructure approaches, are applied to further enhance the properties of two-dimensional materials; their novel device applications and opportunities are also presented.
Journal ArticleDOI

Extraordinarily Strong Interlayer Interaction in 2D Layered PtS2.

TL;DR: Platinum disulfide (PtS2), a new member of the group-10 transition-metal dichalcogenides, is studied experimentally and theoretically and can be explained by strongly interlayer interaction from the pz orbital hybridization of S atoms.
Journal ArticleDOI

In-Plane Anisotropy in Mono- and Few-Layer ReS2 Probed by Raman Spectroscopy and Scanning Transmission Electron Microscopy

TL;DR: The strong anisotropy in the Raman scattering response for linearly polarized excitation is demonstrated to permit a determination of the crystallographic orientation of ReS2 through comparison with direct structural analysis by scanning transmission electron microscopy (STEM).
Journal ArticleDOI

Mechanical and Electronic Properties of MoS2 Nanoribbons and Their Defects

TL;DR: In this article, the atomic, electronic, magnetic, and phonon properties of the one-dimensional honeycomb structure of molybdenum disulfide (MoS2) using the first-principles plane wave method were analyzed.
References
More filters
Journal ArticleDOI

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene

TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Journal ArticleDOI

Two-dimensional atomic crystals

TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Journal ArticleDOI

Emerging Photoluminescence in Monolayer MoS2

TL;DR: This observation shows that quantum confinement in layered d-electron materials like MoS(2), a prototypical metal dichalcogenide, provides new opportunities for engineering the electronic structure of matter at the nanoscale.
Journal ArticleDOI

Anomalous lattice vibrations of single- and few-layer MoS2.

TL;DR: This work exemplifies the evolution of structural parameters in layered materials in changing from the three-dimensional to the two-dimensional regime by characterized by Raman spectroscopy.
Journal ArticleDOI

The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties

J.A. Wilson, +1 more
- 01 May 1969 - 
TL;DR: The transition metal dichalcogenides are about 60 in number as discussed by the authors, and two-thirds of these assume layer structures and can be cleaved down to less than 1000 A and are then transparent in the region of direct band-to-band transitions.
Related Papers (5)