scispace - formally typeset
Open AccessJournal ArticleDOI

Atomically thin MoS2: a new direct-gap semiconductor

TLDR
The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N=1,2,…,6 S-Mo-S monolayers have been investigated by optical spectroscopy and the effect of quantum confinement on the material's electronic structure is traced.
Abstract
The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N=1,2,…,6 S-Mo-S monolayers have been investigated by optical spectroscopy Through characterization by absorption, photoluminescence, and photoconductivity spectroscopy, we trace the effect of quantum confinement on the material's electronic structure With decreasing thickness, the indirect band gap, which lies below the direct gap in the bulk material, shifts upwards in energy by more than 06 eV This leads to a crossover to a direct-gap material in the limit of the single monolayer Unlike the bulk material, the MoS₂ monolayer emits light strongly The freestanding monolayer exhibits an increase in luminescence quantum efficiency by more than a factor of 10⁴ compared with the bulk material

read more

Citations
More filters
Journal ArticleDOI

Interface Engineering for High‐Performance Top‐Gated MoS2 Field‐Effect Transistors

TL;DR: Interface or dielectric engineering is an important step towards the practical implementation of MoS2 devices with the optimized performance in the back- or dual-gated geometry.
Journal ArticleDOI

Probing Interlayer Interactions in Transition Metal Dichalcogenide Heterostructures by Optical Spectroscopy: MoS2/WS2 and MoSe2/WSe2.

TL;DR: In this article, the authors applied optical absorption spectroscopy to investigate van der Waals heterostructures formed of pairs of monolayer transition metal dichalcogenide crystals, choosing MoS2/WS2 and MoSe2/WSe2 as test cases.
Journal ArticleDOI

Strong Second-Harmonic Generation in Atomic Layered GaSe.

TL;DR: The first observation of strong optical second-harmonic generation (SHG) in monolayer GaSe under nonresonant excitation and emission condition is reported and provides a route toward exploring the structural information and the possibility to observe other nonlinear effects in GaSe atomic layers.
Journal ArticleDOI

Valley and band structure engineering of folded MoS2 bilayers

TL;DR: By folding exfoliated MoS2 monolayers-MoS2 bilayers with different stacking orders, this work provides an effective and versatile means to engineer transition-metal dichalcogenide materials with desirable electronic and optical properties.
Journal ArticleDOI

Self-Supporting Metal-Organic Layers as Single-Site Solid Catalysts.

TL;DR: This work uncovers an entirely new strategy for designing single-site solid catalysts and opens the door to a new class of two-dimensional coordination materials with molecular functionalities.
References
More filters
Journal ArticleDOI

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene

TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Journal ArticleDOI

Two-dimensional atomic crystals

TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Journal ArticleDOI

Emerging Photoluminescence in Monolayer MoS2

TL;DR: This observation shows that quantum confinement in layered d-electron materials like MoS(2), a prototypical metal dichalcogenide, provides new opportunities for engineering the electronic structure of matter at the nanoscale.
Journal ArticleDOI

Anomalous lattice vibrations of single- and few-layer MoS2.

TL;DR: This work exemplifies the evolution of structural parameters in layered materials in changing from the three-dimensional to the two-dimensional regime by characterized by Raman spectroscopy.
Journal ArticleDOI

The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties

J.A. Wilson, +1 more
- 01 May 1969 - 
TL;DR: The transition metal dichalcogenides are about 60 in number as discussed by the authors, and two-thirds of these assume layer structures and can be cleaved down to less than 1000 A and are then transparent in the region of direct band-to-band transitions.
Related Papers (5)