scispace - formally typeset
Open AccessJournal ArticleDOI

Comparative Genomics Yields Insights into Niche Adaptation of Plant Vascular Wilt Pathogens

TLDR
Insight is revealed into the genetic mechanisms of niche adaptation of fungal wilt pathogens, advances the understanding of the evolution and development of their pathogenesis, and sheds light on potential avenues for the development of novel disease management strategies to combat destructive wilt diseases.
Abstract
The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in osmolarity. To gain insights into the mechanisms that confer the organisms' pathogenicity and enable them to proliferate in the unique ecological niche of the plant vascular system, we sequenced the genomes of V. dahliae and V. albo-atrum and compared them to each other, and to the genome of Fusarium oxysporum, another fungal wilt pathogen. Our analyses identified a set of proteins that are shared among all three wilt pathogens, and present in few other fungal species. One of these is a homolog of a bacterial glucosyltransferase that synthesizes virulence-related osmoregulated periplasmic glucans in bacteria. Pathogenicity tests of the corresponding V. dahliae glucosyltransferase gene deletion mutants indicate that the gene is required for full virulence in the Australian tobacco species Nicotiana benthamiana. Compared to other fungi, the two sequenced Verticillium genomes encode more pectin-degrading enzymes and other carbohydrate-active enzymes, suggesting an extraordinary capacity to degrade plant pectin barricades. The high level of synteny between the two Verticillium assemblies highlighted four flexible genomic islands in V. dahliae that are enriched for transposable elements, and contain duplicated genes and genes that are important in signaling/transcriptional regulation and iron/lipid metabolism. Coupled with an enhanced capacity to degrade plant materials, these genomic islands may contribute to the expanded genetic diversity and virulence of V. dahliae, the primary causal agent of Verticillium wilts. Significantly, our study reveals insights into the genetic mechanisms of niche adaptation of fungal wilt pathogens, advances our understanding of the evolution and development of their pathogenesis, and sheds light on potential avenues for the development of novel disease management strategies to combat destructive wilt diseases.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Genome evolution in filamentous plant pathogens: why bigger can be better

TL;DR: Cases in which genome plasticity has contributed to the emergence of new virulence traits are illustrated and how genome expansions may have had an impact on the co-evolutionary conflict between these filamentous plant pathogens and their hosts are discussed.
Journal ArticleDOI

Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing

TL;DR: It is demonstrated that Ave1 activates Ve1-mediated resistance and markedly contributes to fungal virulence, not only on tomato but also on Arabidopsis, and that Verticillium acquired Ave1 from plants through horizontal gene transfer.
Journal ArticleDOI

The xylem as battleground for plant hosts and vascular wilt pathogens.

TL;DR: This review discusses the current knowledge on interactions of vascular wilt pathogens with their host plants, with emphasis on host defense responses against this group of pathogens.
Journal ArticleDOI

Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen

TL;DR: This work shows that in response to infection with Verticillium dahliae, cotton plants increase production of microRNA 166 and miR159 and export both to the fungal hyphae for specific silencing, identifying a novel defence strategy of host plants by exporting specific miRNAs to induce cross-kingdom gene silencing in pathogenic fungi and confer disease resistance.
References
More filters
Journal ArticleDOI

The neighbor-joining method: a new method for reconstructing phylogenetic trees.

TL;DR: The neighbor-joining method and Sattath and Tversky's method are shown to be generally better than the other methods for reconstructing phylogenetic trees from evolutionary distance data.
Journal ArticleDOI

MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0

TL;DR: Version 4 of MEGA software expands on the existing facilities for editing DNA sequence data from autosequencers, mining Web-databases, performing automatic and manual sequence alignment, analyzing sequence alignments to estimate evolutionary distances, inferring phylogenetic trees, and testing evolutionary hypotheses.

Biometery: The principles and practice of statistics in biological research

TL;DR: In this paper, the authors present a model for the analysis of variance in a single-classification and two-way and multiway analysis of Variance with the assumption of correlation.
Related Papers (5)

Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

Li-Jun Ma, +65 more
- 18 Mar 2010 - 

Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea

Joelle Amselem, +76 more
- 18 Aug 2011 -