scispace - formally typeset
Journal ArticleDOI

Impact of a Spacer Dielectric and a Gate Overlap/Underlap on the Device Performance of a Tunnel Field-Effect Transistor

TLDR
In this paper, the effects of varying the dielectric constant and width of the spacer are studied, and it is observed that the use of a low-dielectric as a spacer causes an improvement in its on-state current.
Abstract
A tunnel field-effect transistor (TFET) for which the device operation is based upon a band-to-band tunneling mechanism is very attractive for low-power ultralarge-scale integration circuits. A detailed investigation, with the help of extensive device simulations, of the effects of a spacer dielectric on the device performance of a TFET is reported in this paper. The effects of varying the dielectric constant and width of the spacer are studied. It is observed that the use of a low- dielectric as a spacer causes an improvement in its on-state current. The device performance is degraded with an increase in the spacer width until a certain value (~30 nm); after which, the dependence becomes very weak. The effects of varying the source doping concentration as well as the gate overlap/underlap are also investigated. Higher source doping or a gate-source overlap reduces the spacer dependence of the device characteristics. A gate underlap structure, however, shows an improved performance for a high- spacer. For a given spacer, although a gate overlap or a relatively large gate underlap degrades the device performance, a small gate underlap shows an improvement in it.

read more

Citations
More filters
Journal ArticleDOI

Interfacial Charge Analysis of Heterogeneous Gate Dielectric-Gate All Around-Tunnel FET for Improved Device Reliability

TL;DR: In this article, the impact of interface traps, both donor and acceptor interface charges, present at the Si/SiO2 interface, on analog/RF performance and linearity distortion analysis of heterogeneous-gate-dielectric gate-all-around tunnel FET (HD-GAA-TFET) was investigated.
Journal ArticleDOI

Comparative Performance Analysis of the Dielectrically Modulated Full- Gate and Short-Gate Tunnel FET-Based Biosensors

TL;DR: In this article, a short-gate tunneling-field-effect-transistor (SG-TFET) structure has been investigated for the dielectrically modulated biosensing applications in comparison with a full-gate TFET structure of similar dimensions.
Journal ArticleDOI

Tunnel Field-Effect Transistors for Analog/Mixed-Signal System-on-Chip Applications

TL;DR: In this article, the analog performance of a double-gate n-type tunnel field effect transistor (n-TFET) with a relatively small body thickness (10 nm) was investigated.
Journal ArticleDOI

Drain-Dependence of Tunnel Field-Effect Transistor Characteristics: The Role of the Channel

TL;DR: In this article, the role of the channel on the drainpotential dependence of double-gate TFET characteristics is investigated, and it is found that a good drain current saturation is observed only for devices in which a relatively thick silicon body or gate-drain underlaps result in the penetration of the drain electric field through the channel.
Journal ArticleDOI

Impact of high-k spacer on device performance of a junctionless transistor

TL;DR: In this article, the impact of spacer dielectric on both sides of gate oxide on the device performance of a symmetric double-gate junctionless transistor (DGJLT) is reported for the first time.
References
More filters
Journal ArticleDOI

The impact of high-/spl kappa/ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs

TL;DR: In this paper, the potential impact of high/spl kappa/ gate dielectrics on device short-channel performance is studied over a wide range of dielectric permittivities using a two-dimensional (2D) simulator implemented with quantum mechanical models.
Journal ArticleDOI

Scaling the vertical tunnel FET with tunnel bandgap modulation and gate workfunction engineering

TL;DR: It is shown here that the tunnel FET performance is nearly independent of channel length scaling L and with /spl delta/p/sup +/ SiGe layer, scaling t/sub ox/ is not critical to Tunnel FET scaling.
Journal ArticleDOI

Donor deactivation in silicon nanostructures.

TL;DR: It is shown that the donor ionization energy increases with decreasing nanowire radius, and that it profoundly modifies the attainable free carrier density at values of the radius much larger than those at which quantum and dopant surface segregation effects set in.
Journal ArticleDOI

Steep Subthreshold Slope n- and p-Type Tunnel-FET Devices for Low-Power and Energy-Efficient Digital Circuits

TL;DR: In this paper, the authors proposed n-and p-type tunnel field effect transistors (T-FETs) based on heterostructure Si/intrinsic-SiGe channel layer, which exhibit very small subthreshold swings, as well as low threshold voltages.
Proceedings Article

Germanium-source tunnel field effect transistors with record high I ON /I OFF

TL;DR: Tunnel field effect transistors (TFETs) with record high I ON /I OFF ratio (≫106) for lowvoltage (0.5V) operation are achieved by using germanium in the source region to achieve a small tunnel bandgap.
Related Papers (5)