scispace - formally typeset
Open AccessJournal ArticleDOI

Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps

Reads0
Chats0
TLDR
It is shown that, following priming with granulocyte/macrophage colony-stimulating factor and subsequent short-term toll-like receptor 4 or complement factor 5a receptor stimulation, viable neutrophils are able to generate NETs.
Abstract
Neutrophil extracellular traps (NETs) represent extracellular structures able to bind and kill microorganisms. It is believed that they are generated by neutrophils undergoing cell death, allowing these dying or dead cells to kill microbes. We show that, following priming with granulocyte/macrophage colony-stimulating factor (GM-CSF) and subsequent short-term toll-like receptor 4 (TLR4) or complement factor 5a (C5a) receptor stimulation, viable neutrophils are able to generate NETs. Strikingly, NETs formed by living cells contain mitochondrial, but no nuclear, DNA. Pharmacological or genetic approaches to block reactive oxygen species (ROS) production suggested that NET formation is ROS dependent. Moreover, neutrophil populations stimulated with GM-CSF and C5a showed increased survival compared with resting neutrophils, which did not generate NETs. In conclusion, mitochondrial DNA release by neutrophils and NET formation do not require neutrophil death and do also not limit the lifespan of these cells.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

Lorenzo Galluzzi, +186 more
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Journal ArticleDOI

Neutrophils in the activation and regulation of innate and adaptive immunity

TL;DR: Neutrophils have long been viewed as the final effector cells of an acute inflammatory response, with a primary role in the clearance of extracellular pathogens, but more recent evidence has extended the functions of these cells.
Journal ArticleDOI

Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012

TL;DR: A functional classification of cell death subroutines is proposed that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic programmed cell death, regulated necrosis, autophagic cell death and mitotic catastrophe.
Journal ArticleDOI

Extracellular DNA traps promote thrombosis

TL;DR: It is reported that NETs provide a heretofore unrecognized scaffold and stimulus for thrombus formation and may further explain the epidemiological association of infection with thrombosis.
Journal ArticleDOI

Neutrophils, from marrow to microbes.

TL;DR: Neutrophils are produced in the bone marrow from stem cells that proliferate and differentiate to mature neutrophils fully equipped with an armory of granules that contain proteins that enable the neutrophil to deliver lethal hits against microorganisms, but also to cause great tissue damage.
References
More filters
Journal ArticleDOI

Neutrophil extracellular traps kill bacteria

TL;DR: It is described that, upon activation, neutrophils release granule proteins and chromatin that together form extracellular fibers that bind Gram-positive and -negative bacteria, which degrade virulence factors and kill bacteria.
Journal ArticleDOI

Neutrophils and immunity: challenges and opportunities.

TL;DR: Neutrophils inform and shape immune responses, contribute to the repair of tissue as well as its breakdown, use killing mechanisms that enrich the concepts of specificity, and offer exciting opportunities for the treatment of neoplastic, autoinflammatory and autoimmune disorders.
Journal ArticleDOI

Novel cell death program leads to neutrophil extracellular traps

TL;DR: This novel ROS-dependent death allows neutrophils to fulfill their antimicrobial function, even beyond their lifespan.
Journal ArticleDOI

Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood

TL;DR: It is proposed that platelet TLR4 is a threshold switch for this new bacterial trapping mechanism in severe sepsis, where NETs have the greatest capacity for bacterial trapping.
Journal ArticleDOI

Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis.

TL;DR: Calpain-mediated Atg5 cleavage provokes apoptotic cell death, therefore, represents a molecular link between autophagy and apoptosis — a finding with potential importance for clinical anticancer therapies.
Related Papers (5)