scispace - formally typeset
Search or ask a question

Showing papers on "Metabolite published in 2012"


Journal ArticleDOI
TL;DR: This review focuses on the use of liquid chromatography with tandem mass spectrometry (LC-MS/MS) for quantitative and qualitative metabolomics studies and illustrates recent developments in computational methods for metabolite identification, including ion annotation, spectral interpretation and spectral matching.
Abstract: Metabolomics aims at detection and quantitation of all metabolites in biological samples. The presence of metabolites with a wide variety of physicochemical properties and different levels of abundance challenges existing analytical platforms used for identification and quantitation of metabolites. Significant efforts have been made to improve analytical and computational methods for metabolomics studies. This review focuses on the use of liquid chromatography with tandem mass spectrometry (LC-MS/MS) for quantitative and qualitative metabolomics studies. It illustrates recent developments in computational methods for metabolite identification, including ion annotation, spectral interpretation and spectral matching. We also review selected reaction monitoring and high-resolution MS for metabolite quantitation. We discuss current challenges in metabolite identification and quantitation as well as potential solutions.

413 citations


Journal ArticleDOI
TL;DR: The authors show that in vivo brain imaging for genotyping cancer patients is a possibility—one that would avoid invasive clinical procedures and help doctors not only predict cancer outcomes but also effectively treat tumors on the basis of grade and genetic makeup.
Abstract: Mutations in the gene isocitrate dehydrogenase 1 (IDH1) are present in up to 86% of grade II and III gliomas and secondary glioblastoma. Arginine 132 (R132) mutations in the enzyme IDH1 result in excess production of the metabolite 2-hydroxyglutarate (2HG), which could be used as a biomarker for this subset of gliomas. Here, we use optimized in vivo spectral-editing and two-dimensional (2D) correlation magnetic resonance spectroscopy (MRS) methods to unambiguously detect 2HG noninvasively in glioma patients with IDH1 mutations. By comparison, fitting of conventional 1D MR spectra can provide false-positive readouts owing to spectral overlap of 2HG and chemically similar brain metabolites, such as glutamate and glutamine. 2HG was also detected using 2D high-resolution magic angle spinning MRS performed ex vivo on a separate set of glioma biopsy samples. 2HG detection by in vivo or ex vivo MRS enabled detailed molecular characterization of a clinically important subset of human gliomas. This has implications for diagnosis as well as monitoring of treatments targeting mutated IDH1.

368 citations


Journal ArticleDOI
TL;DR: IDEOM provides a user-friendly data processing application that automates filtering and identification of metabolite peaks, paying particular attention to common sources of noise and false identifications generated by liquid chromatography-mass spectrometry platforms.
Abstract: The application of emerging metabolomics technologies to the comprehensive investigation of cellular biochemistry has been limited by bottlenecks in data processing, particularly noise filtering and metabolite identification. IDEOM provides a user-friendly data processing application that automates filtering and identification of metabolite peaks, paying particular attention to common sources of noise and false identifications generated by liquid chromatography-mass spectrometry (LC-MS) platforms. Building on advanced processing tools such as mzMatch and XCMS, it allows users to run a comprehensive pipeline for data analysis and visualization from a graphical user interface within Microsoft Excel, a familiar program for most biological scientists.

297 citations


Journal ArticleDOI
TL;DR: It is shown that physiological challenges increased interindividual variation even in phenotypically similar volunteers, revealing metabotypes not observable in baseline metabolite profiles; volunteer‐specific metabolite concentrations were consistently reflected in various biofluids; and readouts from a systematic model of β‐oxidation showed significant and stronger associations with physiological parameters than absolute metabolite concentration.
Abstract: Metabolic challenge protocols, such as the oral glucose tolerance test, can uncover early alterations in metabolism preceding chronic diseases. Nevertheless, most metabolomics data accessible today reflect the fasting state. To analyze the dynamics of the human metabolome in response to environmental stimuli, we submitted 15 young healthy male volunteers to a highly controlled 4 d challenge protocol, including 36 h fasting, oral glucose and lipid tests, liquid test meals, physical exercise, and cold stress. Blood, urine, exhaled air, and breath condensate samples were analyzed on up to 56 time points by MS- and NMR-based methods, yielding 275 metabolic traits with a focus on lipids and amino acids. Here, we show that physiological challenges increased interindividual variation even in phenotypically similar volunteers, revealing metabotypes not observable in baseline metabolite profiles; volunteer-specific metabolite concentrations were consistently reflected in various biofluids; and readouts from a systematic model of β-oxidation (e.g., acetylcarnitine/palmitylcarnitine ratio) showed significant and stronger associations with physiological parameters (e.g., fat mass) than absolute metabolite concentrations, indicating that systematic models may aid in understanding individual challenge responses. Due to the multitude of analytical methods, challenges and sample types, our freely available metabolomics data set provides a unique reference for future metabolomics studies and for verification of systems biology models.

290 citations


Journal ArticleDOI
TL;DR: Analysis of the colonic luminal metabolome using capillary electrophoresis mass spectrometry with time-of-flight with CE-TOFMS indicates that intestinal microbiota highly influenced the Colonic luminals metabolome and a comprehensive understanding of intestinal luminal metabolites is critical for clarifying host-intestinal bacterial interactions.
Abstract: Low-molecular-weight metabolites produced by intestinal microbiota play a direct role in health and disease. In this study, we analyzed the colonic luminal metabolome using capillary electrophoresis mass spectrometry with time-of-flight (CE-TOFMS) -a novel technique for analyzing and differentially displaying metabolic profiles- in order to clarify the metabolite profiles in the intestinal lumen. CE-TOFMS identified 179 metabolites from the colonic luminal metabolome and 48 metabolites were present in significantly higher concentrations and/or incidence in the germ-free (GF) mice than in the Ex-GF mice (p < 0.05), 77 metabolites were present in significantly lower concentrations and/or incidence in the GF mice than in the Ex-GF mice (p < 0.05), and 56 metabolites showed no differences in the concentration or incidence between GF and Ex-GF mice. These indicate that intestinal microbiota highly influenced the colonic luminal metabolome and a comprehensive understanding of intestinal luminal metabolome is critical for clarifying host-intestinal bacterial interactions.

270 citations


Journal ArticleDOI
TL;DR: The results indicate that metabolic profiles are age dependent and might reflect different aging processes, such as incomplete mitochondrial fatty acid oxidation.
Abstract: Understanding the complexity of aging is of utmost importance. This can now be addressed by the novel and powerful approach of metabolomics. However, to date, only a few metabolic studies based on large samples are available. Here, we provide novel and specific information on age-related metabolite concentration changes in human homeostasis. We report results from two population-based studies: the KORA F4 study from Germany as a discovery cohort, with 1038 female and 1124 male participants (32-81 years), and the TwinsUK study as replication, with 724 female participants. Targeted metabolomics of fasting serum samples quantified 131 metabolites by FIA-MS/MS. Among these, 71/34 metabolites were significantly associated with age in women/men (BMI adjusted). We further identified a set of 13 independent metabolites in women (with P values ranging from 4.6 × 10(-04) to 7.8 × 10(-42) , α(corr) = 0.004). Eleven of these 13 metabolites were replicated in the TwinsUK study, including seven metabolite concentrations that increased with age (C0, C10:1, C12:1, C18:1, SM C16:1, SM C18:1, and PC aa C28:1), while histidine decreased. These results indicate that metabolic profiles are age dependent and might reflect different aging processes, such as incomplete mitochondrial fatty acid oxidation. The use of metabolomics will increase our understanding of aging networks and may lead to discoveries that help enhance healthy aging.

264 citations


Journal ArticleDOI
01 Jun 2012-Diabetes
TL;DR: Metabolite associations with insulin resistance were studied in young Finns to elucidate underlying metabolic pathways and reflect the degree of insulin resistance evidenced in young, normoglycemic adults with sex-specific fingerprints.
Abstract: Metabolite associations with insulin resistance were studied in 7,098 young Finns (age 31 ± 3 years; 52% women) to elucidate underlying metabolic pathways. Insulin resistance was assessed by the homeostasis model (HOMA-IR) and circulating metabolites quantified by high-throughput nuclear magnetic resonance spectroscopy in two population-based cohorts. Associations were analyzed using regression models adjusted for age, waist, and standard lipids. Branched-chain and aromatic amino acids, gluconeogenesis intermediates, ketone bodies, and fatty acid composition and saturation were associated with HOMA-IR (P < 0.0005 for 20 metabolite measures). Leu, Ile, Val, and Tyr displayed sex- and obesity-dependent interactions, with associations being significant for women only if they were abdominally obese. Origins of fasting metabolite levels were studied with dietary and physical activity data. Here, protein energy intake was associated with Val, Phe, Tyr, and Gln but not insulin resistance index. We further tested if 12 genetic variants regulating the metabolites also contributed to insulin resistance. The genetic determinants of metabolite levels were not associated with HOMA-IR, with the exception of a variant in GCKR associated with 12 metabolites, including amino acids (P < 0.0005). Nonetheless, metabolic signatures extending beyond obesity and lipid abnormalities reflected the degree of insulin resistance evidenced in young, normoglycemic adults with sex-specific fingerprints.

254 citations


Journal ArticleDOI
TL;DR: There is broad evidence that this could be a common feature of all microorganism species when cultivated under conditions of carbon excess and non-inhibited carbon uptake, and this finding has consequences for metabolite balancing and, particularly, for intracellular metabolite quantification and 13C-metabolic flux analysis.
Abstract: Overflow metabolism is well known for yeast, bacteria and mammalian cells. It typically occurs under glucose excess conditions and is characterized by excretions of by-products such as ethanol, acetate or lactate. This phenomenon, also denoted the short-term Crabtree effect, has been extensively studied over the past few decades, however, its basic regulatory mechanism and functional role in metabolism is still unknown. Here we present a comprehensive quantitative and time-dependent analysis of the exometabolome of Escherichia coli, Corynebacterium glutamicum, Bacillus licheniformis, and Saccharomyces cerevisiae during well-controlled bioreactor cultivations. Most surprisingly, in all cases a great diversity of central metabolic intermediates and amino acids is found in the culture medium with extracellular concentrations varying in the micromolar range. Different hypotheses for these observations are formulated and experimentally tested. As a result, the intermediates in the culture medium during batch growth must originate from passive or active transportation due to a new phenomenon termed “extended” overflow metabolism. Moreover, we provide broad evidence that this could be a common feature of all microorganism species when cultivated under conditions of carbon excess and non-inhibited carbon uptake. In turn, this finding has consequences for metabolite balancing and, particularly, for intracellular metabolite quantification and 13C-metabolic flux analysis.

250 citations


Journal ArticleDOI
TL;DR: Several metabolites that displayed conserved responses to drought as well as metabolites whose levels correlated well with certain physiological traits were highlighted.

237 citations


01 Jan 2012
TL;DR: In this article, the associations of metabolites with insulin resistance were studied in 7,098 young Finns (age 31 ± 3 years; 52% women) to elucidate underlying metabolic pathways, using regression models adjusted for age, waist, and standard lipids.
Abstract: Metabolite associations with insulin resistance were studied in 7,098 young Finns (age 31 ± 3 years; 52% women) to elucidate underlying metabolic pathways. Insulin resistance was assessed by the homeostasis model (HOMA-IR) and circulating metabolites quantified by high-throughput nuclear magnetic resonance spectroscopy in two population-based cohorts. Associations were analyzed using regression models adjusted for age, waist, and standard lipids. Branched-chain and aromatic amino acids, gluconeogenesis intermediates, ketone bodies, and fatty acid composition and saturation were associated with HOMA-IR (P < 0.0005 for 20 metabolite measures). Leu, Ile, Val, and Tyr displayed sex- and obesity-dependent interactions, with associations being significant for women only if they were abdominally obese. Origins of fasting metabolite levels were studied with dietary and physical activity data. Here, protein energy intake was associated with Val, Phe, Tyr, and Gln but not insulin resistance index. We further tested if 12 genetic variants regulating the metabolites also contributed to insulin resistance. The genetic determinants of metabolite levels were not associated with HOMA-IR, with the exception of a variant in GCKR associated with 12 metabolites, including amino acids (P < 0.0005). Nonetheless, metabolic signatures extending beyond obesity and lipid abnormalities reflected the degree of insulin resistance evidenced in young, normoglycemic adults with sex-specific fingerprints.

230 citations


Journal ArticleDOI
TL;DR: It is shown that colonic mucosa from patients with UC exhibit increased signal transducer and activator of transcription 1 (STAT1) activation, and this STAT1 hyperactivation is correlated with increased T cell infiltration, suggesting that butyrate delivers a double hit: induction of T cell apoptosis to eliminate the source of inflammation and suppression of IFN-γ-mediated inflammation in colonic epithelial cells, to suppress colonic inflammation.
Abstract: Butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit protective effects toward inflammatory diseases such as ulcerative colitis (UC) and inflammation-mediated c...

Journal ArticleDOI
TL;DR: Phospholipid and bile acid metabolism is disrupted in NASH, likely due to enhanced hepatic inflammatory signaling.

Journal ArticleDOI
TL;DR: This contribution aims to review the most important mechanisms of various abiotic and biotic interactions, such as pathogenic microorganisms and herbivory, by which plants respond to exogenous influences, and will also report on time-scale variable influences on secondary metabolite profiles.

Journal ArticleDOI
TL;DR: These studies suggest that select brain-targeted PAC metabolites benefit cognition by improving synaptic plasticity in the brain, and provide impetus to develop 3′-O-Me-EC-Gluc and other brain- targeting PAC metabolites to promote learning and memory in AD and other forms of dementia.
Abstract: While polyphenolic compounds have many health benefits, the potential development of polyphenols for the prevention/treatment of neurological disorders is largely hindered by their complexity as well as by limited knowledge regarding their bioavailability, metabolism, and bioactivity, especially in the brain. We recently demonstrated that dietary supplementation with a specific grape-derived polyphenolic preparation (GP) significantly improves cognitive function in a mouse model of Alzheimer's disease (AD). GP is comprised of the proanthocyanidin (PAC) catechin and epicatechin in monomeric (Mo), oligomeric, and polymeric forms. In this study, we report that following oral administration of the independent GP forms, only Mo is able to improve cognitive function and only Mo metabolites can selectively reach and accumulate in the brain at a concentration of ∼400 nM. Most importantly, we report for the first time that a biosynthetic epicatechin metabolite, 3'-O-methyl-epicatechin-5-O-β-glucuronide (3'-O-Me-EC-Gluc), one of the PAC metabolites identified in the brain following Mo treatment, promotes basal synaptic transmission and long-term potentiation at physiologically relevant concentrations in hippocampus slices through mechanisms associated with cAMP response element binding protein (CREB) signaling. Our studies suggest that select brain-targeted PAC metabolites benefit cognition by improving synaptic plasticity in the brain, and provide impetus to develop 3'-O-Me-EC-Gluc and other brain-targeted PAC metabolites to promote learning and memory in AD and other forms of dementia.

Journal ArticleDOI
TL;DR: DNA variation can be used as a systematic source of perturbation in segregating populations as a way to infer regulatory networks via the integration of large-scale, high-dimensional molecular profiling data.
Abstract: Cells employ multiple levels of regulation, including transcriptional and translational regulation, that drive core biological processes and enable cells to respond to genetic and environmental changes. Small-molecule metabolites are one category of critical cellular intermediates that can influence as well as be a target of cellular regulations. Because metabolites represent the direct output of protein-mediated cellular processes, endogenous metabolite concentrations can closely reflect cellular physiological states, especially when integrated with other molecular-profiling data. Here we develop and apply a network reconstruction approach that simultaneously integrates six different types of data: endogenous metabolite concentration, RNA expression, DNA variation, DNA–protein binding, protein–metabolite interaction, and protein–protein interaction data, to construct probabilistic causal networks that elucidate the complexity of cell regulation in a segregating yeast population. Because many of the metabolites are found to be under strong genetic control, we were able to employ a causal regulator detection algorithm to identify causal regulators of the resulting network that elucidated the mechanisms by which variations in their sequence affect gene expression and metabolite concentrations. We examined all four expression quantitative trait loci (eQTL) hot spots with colocalized metabolite QTLs, two of which recapitulated known biological processes, while the other two elucidated novel putative biological mechanisms for the eQTL hot spots.

Journal ArticleDOI
TL;DR: It is suggested that glucose is the major translocated metabolite in dinoflagellate–cnidarian symbiosis and that the release of glycerol from isolated algae may be part of a stress response.
Abstract: Reef-building corals and many other cnidarians are symbiotic with dinoflagellates of the genus Symbiodinium. It has long been known that the endosymbiotic algae transfer much of their photosynthetically fixed carbon to the host and that this can provide much of the host's total energy. However, it has remained unclear which metabolite(s) are directly translocated from the algae into the host tissue. We reexamined this question in the small sea anemone Aiptasia using labeling of intact animals in the light with (13)C-bicarbonate, rapid homogenization and separation of animal and algal fractions, and analysis of metabolite labeling by gas chromatography-mass spectrometry. We found labeled glucose in the animal fraction within 2 min of exposure to (13)C-bicarbonate, whereas no significant labeling of other compounds was observed within the first 10 min. Although considerable previous evidence has suggested that glycerol might be a major translocated metabolite, we saw no significant labeling of glycerol within the first hour, and incubation of intact animals with (13)C-labeled glycerol did not result in a rapid production of (13)C-glucose. In contrast, when Symbiodinium cells freshly isolated from host tissue were exposed to light and (13)C-bicarbonate in the presence of host homogenate, labeled glycerol, but not glucose, was detected in the medium. We also observed early production of labeled glucose, but not glycerol, in three coral species. Taken together, the results suggest that glucose is the major translocated metabolite in dinoflagellate-cnidarian symbiosis and that the release of glycerol from isolated algae may be part of a stress response.

Journal ArticleDOI
TL;DR: Test the hypothesis that JWH-018 and its fluorinated counterpart AM2201 are subject to cytochrome P450 (P450)-mediated oxidation, forming potent hydroxylated metabolites that retain significant affinity and activity at the cannabinoid 1 (CB1) receptor.
Abstract: Abuse of synthetic cannabinoids (SCs), such as [1-naphthalenyl-(1-pentyl-1H-indol-3-yl]-methanone (JWH-018) and [1-(5-fluoropentyl)-1H-indol-3-yl]-1-naphthalenyl-methanone (AM2201), is increasing at an alarming rate. Although very little is known about the metabolism and toxicology of these popular designer drugs, mass spectrometric analysis of human urine specimens after JWH-018 and AM2201 exposure identified monohydroxylated and carboxylated derivatives as major metabolites. The present study extends these initial findings by testing the hypothesis that JWH-018 and its fluorinated counterpart AM2201 are subject to cytochrome P450 (P450)-mediated oxidation, forming potent hydroxylated metabolites that retain significant affinity and activity at the cannabinoid 1 (CB(1)) receptor. Kinetic analysis using human liver microsomes and recombinant human protein identified CYP2C9 and CYP1A2 as major P450s involved in the oxidation of the JWH-018 and AM2201. In vitro metabolite formation mirrored human urinary metabolic profiles, and each of the primary enzymes exhibited high affinity (K(m) = 0.81-7.3 μM) and low to high reaction velocities (V(max) = 0.0053-2.7 nmol of product · min(-1) · nmol protein(-1)). The contribution of CYP2C19, 2D6, 2E1, and 3A4 in the hepatic metabolic clearance of these synthetic cannabinoids was minimal (f(m) = <0.2). In vitro studies demonstrated that the primary metabolites produced in humans display high affinity and intrinsic activity at the CB(1) receptor, which was attenuated by the CB(1) receptor antagonist (6aR,10aR)-3-(1-methanesulfonylamino-4-hexyn-6-yl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran (O-2050). Results from the present study provide critical, missing data related to potential toxicological properties of "K2" parent compounds and their human metabolites, including mechanism(s) of action at cannabinoid receptors.

Journal ArticleDOI
TL;DR: Careful examination of the raw data and the use of masses for predicted metabolites produced an extension of the metabolite list for human urine that showed high-quality chromatographic performance for metabolite standards, improved separation for isomers, and the greatest coverage of polar metabolites in urine.
Abstract: In this study, we assessed three liquid chromatographic platforms: reversed phase (RP), aqueous normal phase (ANP), and hydrophilic interaction (HILIC) for the analysis of polar metabolite standard mixtures and for their coverage of urinary metabolites. The two zwitterionic HILIC columns showed high-quality chromatographic performance for metabolite standards, improved separation for isomers, and the greatest coverage of polar metabolites in urine. In contrast, on the reversed phase column, most metabolites eluted very rapidly with little or no separation. Using an Exactive Orbitrap mass spectrometer with a HILIC liquid chromatographic platform, approximately 970 metabolite signals with repeatable peak areas (relative standard deviation (RSD) ≤ 25%) could be putatively identified in human urine, by elemental composition assignment within a 3 ppm mass error. The ability of the methodology for the verification of nonmolecular ions, which arise from adduct formation, and the possibility of distinguishing isomers could also be demonstrated. Careful examination of the raw data and the use of masses for predicted metabolites produced an extension of the metabolite list for human urine.

Journal ArticleDOI
TL;DR: The primary finding from the metabolic analysis was that the cells in LP conditions exhibited a less efficient energy metabolism, with glucose primarily being converted into pyruvate, sorbitol, lactate, and other glycolytic intermediates, which may be due to an inability to progress into the TCA cycle.
Abstract: A metabolic shift from lactate production (LP) to net lactate consumption (LC) phenotype was observed in certain Chinese hamster ovary (CHO) cell lines during the implementation of a new chemically defined medium (CDM) formulation for antibody production. In addition, this metabolic shift typically leads to process performance improvements in cell growth, productivity, process robustness, and scalability. In our previous studies, a correlation between a key media component, copper, and this lactate metabolism shift was observed. To further investigate this phenomenon, two complementary studies were conducted. In the first study, a single cell line was cultivated in two media that only differed in their copper concentrations, yet were known to generate an LP or LC phenotype with that cell line. In the second study, two different cell lines, which were known to possess inherently different lactate metabolic characteristics, were cultivated in the same medium with a high level of copper; one cell line produced lactate throughout the duration of the culture, and the other consumed lactate after an initial period of LP. Cell pellet and supernatant samples from both studies were collected at regular time intervals, and their metabolite profiles were investigated. The primary finding from the metabolic analysis was that the cells in LP conditions exhibited a less efficient energy metabolism, with glucose primarily being converted into pyruvate, sorbitol, lactate, and other glycolytic intermediates. This decrease in energy efficiency may be due to an inability of pyruvate and acetyl-CoA to progress into the TCA cycle. The lack of progression into the TCA cycle or overflow metabolism in the LP phenotype resulted in the inadequate supply of ATP for the cells. As a consequence, the glycolysis pathway remained the major source of ATP, which in turn, resulted in continuous LP throughout the culture. In addition, the accumulation of free fatty acids was observed; this was thought to be a result of phospholipid catabolism that was being used to supplement the energy produced through glycolysis in order to meet the needs of LP cells. A thorough review of the metabolic profiles indicated that the lactate metabolic shift could be related to the oxidative metabolic capacity of cells.

Journal ArticleDOI
TL;DR: The in vivo metabolism of DON in humans was investigated and two closely eluting DON-GlcA's in naturally contaminated urine samples for the first time were determined and tentatively identified DON-15-glucuronide as a major DON metabolite in human urine based on the analysis of these samples.

Journal ArticleDOI
16 Feb 2012-PLOS ONE
TL;DR: Significant changes in the metabolite profile of AD patients compared to healthy controls have been identified and increased cortisol levels seemed to be related to the progression of AD and have been detected in more severe forms of AD.
Abstract: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive loss of cognitive functions. Today the diagnosis of AD relies on clinical evaluations and is only late in the disease. Biomarkers for early detection of the underlying neuropathological changes are still lacking and the biochemical pathways leading to the disease are still not completely understood. The aim of this study was to identify the metabolic changes resulting from the disease phenotype by a thorough and systematic metabolite profiling approach. For this purpose CSF samples from 79 AD patients and 51 healthy controls were analyzed by gas and liquid chromatography-tandem mass spectrometry (GC-MS and LC-MS/MS) in conjunction with univariate and multivariate statistical analyses. In total 343 different analytes have been identified. Significant changes in the metabolite profile of AD patients compared to healthy controls have been identified. Increased cortisol levels seemed to be related to the progression of AD and have been detected in more severe forms of AD. Increased cysteine associated with decreased uridine was the best paired combination to identify light AD (MMSE>22) with specificity and sensitivity above 75%. In this group of patients, sensitivity and specificity above 80% were obtained for several combinations of three to five metabolites, including cortisol and various amino acids, in addition to cysteine and uridine.

Journal ArticleDOI
TL;DR: The enhanced drought tolerance of SAG12-ipt plants was associated with the maintenance of accumulation of several metabolites, particularly amino acids, carbohydrates, organic acids, and organic acids that are mainly involved in the citric acid cycle that could contribute to improved drought tolerance.
Abstract: Increased endogenous plant cytokinin (CK) content through transformation with an adenine isopentyl transferase (ipt) gene has been associated with improved plant drought tolerance. The objective of this study is to determine metabolic changes associated with elevated CK production in ipt transgenic creeping bentgrass (Agrostis stolonifera L.) with improved drought tolerance. Null transformants (NTs) and plants transformed with ipt controlled by a stress- or senescence-activated promoter (SAG12-ipt) were exposed to well-watered conditions or drought stress by withholding irrigation in an environmental growth chamber. Physiological analysis confirmed that the SAG12-ipt line (S41) had improved drought tolerance compared with the NT plants. Specific metabolite changes over the course of drought stress and differential accumulation of metabolites in SAG12-ipt plants compared with NT plants at the same level of leaf relative water content (47% RWC) were identified using gas chromatography‐mass spectroscopy. The metabolite profiling analysis detected 45 metabolites differentially accumulated in response to ipt expression or drought stress, which included amino acids, carbohydrates, organic acids, and organic alcohols. The enhanced drought tolerance of SAG12-ipt plants was associated with the maintenance of accumulation of several metabolites, particularly amino acids (proline, g-aminobutyric acid, alanine, and glycine) carbohydrates (sucrose, fructose, maltose, and ribose), and organic acids that are mainly involved in the citric acid cycle. The accumulation of these metabolites could contribute to improved drought tolerance due to their roles in the stress response pathways such as stress signalling, osmotic adjustment, and respiration for energy production.

Journal ArticleDOI
TL;DR: Comparison of metabolite levels in sera of 78 HCC cases with 184 cirrhotic controls by using ultra performance liquid chromatography coupled with a hybrid quadrupole time-of-flight mass spectrometry provides useful insights into HCC biomarker discovery utilizing metabolomics as an efficient and cost-effective platform.

Journal ArticleDOI
TL;DR: It is shown that childhood obesity influences the composition of the serum metabolome, and the altered metabolites might be considered as potential biomarkers in the generation of new hypotheses on the biological mechanisms behind obesity.
Abstract: Objective: The human serum metabolite profile is reflective of metabolic processes, including pathophysiological changes characteristic of diseases. Therefore, investigation of serum metabolite concentrations in obese children might give new insights into biological mechanisms associated with childhood obesity. Methods: Serum samples of 80 obese and 40 normalweight children between 6 and 15 years of age were analyzed using a mass spectrometrybased metabolomics approach targeting 163 metabolites. Metabolite concentrations and metabolite ratios were compared between obese and normal-weight children as well as between children of different pubertal stages. Results: Metabolite concentration profiles of obese children could be distinguished from those of normal-weight children. After correction for multiple testing, we observed 14 metabolites (glutamine, methionine, proline, nine phospholipids, and two acylcarnitines, p ! 3.8 ! 10 –4 ) and 69 metabolite ratios ( p ! 6.0 ! 10 –6 ) to be significantly altered in obese children. The identified metabolite markers are indicative of oxidative stress and of changes in sphingomyelin metabolism, in -oxidation, and in pathways associated with energy expenditure. In contrast, pubertal stage was not associated with

Journal ArticleDOI
TL;DR: It is shown that polyploidy brings about enhanced accumulation of secondary metabolites in all cases, but exerts differential effects on body size in various species, and in situ immunodetection of 5-methylcytosine sites reveals enhanced DNA methylation in autopolyploids.
Abstract: Whole genome duplication leads to autopolyploidy and brings about an increase in cell size, concentration of secondary metabolites and enhanced cytosine methylation. The increased cell size offers a positive advantage to polyploids for cell-surface-related activities, but there is a differential response to change in body size across species and taxonomic groups. Although polyploidy has been very extensively studied, having genetic, ecological and evolutionary implications, there is no report that underscores the significance of native secondary metabolites vis-a-vis body size with ploidy change. To address this problem we targeted unique diploid-autotetraploid paired sets of eight diverse clones of six species of Cymbopogon- a species complex of aromatic grasses that accumulate qualitatively different monoterpene essential oils (secondary metabolite) in their vegetative biomass. Based on the qualitative composition of essential oils and the plant body size relationship between the diploid versus autotetraploid paired sets, we show that polyploidy brings about enhanced accumulation of secondary metabolites in all cases, but exerts differential effects on body size in various species. It is observed that the accumulation of alcohol-type metabolites (e.g. geraniol) does not inhibit increase in body size with ploidy change from 2× to 4× (r = 0.854, P < 0.01), but aldehyde-type metabolites (e.g. citral) appear to drastically impede body development (r = -0.895). Such a differential response may be correlated to the metabolic steps involved in the synthesis of essential oil components. When changed to tetraploidy, the progenitor diploids requiring longer metabolic steps in production of their secondary metabolites are stressed, and those having shorter metabolite routes better utilize their resources for growth and vigour. In situ immunodetection of 5-methylcytosine sites reveals enhanced DNA methylation in autopolyploids. It is underpinned that the qualitative composition of secondary metabolites found in the vegetative biomass of the progenitor diploid has a decisive bearing on the body size of the derived autotetraploids and brings about an enhancement in genome-wide cytosine methylation.

Journal ArticleDOI
TL;DR: This paper discusses recent advances in method development for LC-MS/MS analysis of lipids, carbohydrates, amino acids and biogenic amines, vitamins and organic acids with focus on human body fluids and presents an overview on recent LC- MS/MS based metabolome studies for cancer, diabetes and coronary heart disease.

Journal ArticleDOI
TL;DR: To the authors' knowledge this is the first time these two human painkiller metabolites are shown to occur in plant tissues.

Journal ArticleDOI
TL;DR: Several of these human plasma metabolites, including specific acylcarnitines and phospholipids, were hitherto not known to be 24-h variant and will be useful in guiding the design and interpretation of future metabolite-based studies.
Abstract: Although daily rhythms regulate multiple aspects of human physiology, rhythmic control of the metabolome remains poorly understood. The primary objective of this proof-of-concept study was identification of metabolites in human plasma that exhibit significant 24-h variation. This was assessed via an untargeted metabolomic approach using liquid chromatography-mass spectrometry (LC-MS). Eight lean, healthy, and unmedicated men, mean age 53.6 (SD ± 6.0) yrs, maintained a fixed sleep/wake schedule and dietary regime for 1 wk at home prior to an adaptation night and followed by a 25-h experimental session in the laboratory where the light/dark cycle, sleep/wake, posture, and calorific intake were strictly controlled. Plasma samples from each individual at selected time points were prepared using liquid-phase extraction followed by reverse-phase LC coupled to quadrupole time-of-flight MS analysis in positive ionization mode. Time-of-day variation in the metabolites was screened for using orthogonal partial least square discrimination between selected time points of 10:00 vs. 22:00 h, 16:00 vs. 04:00 h, and 07:00 (d 1) vs. 16:00 h, as well as repeated-measures analysis of variance with time as an independent variable. Subsequently, cosinor analysis was performed on all the sampled time points across the 24-h day to assess for significant daily variation. In this study, analytical variability, assessed using known internal standards, was low with coefficients of variation <10%. A total of 1069 metabolite features were detected and 203 (19%) showed significant time-of-day variation. Of these, 34 metabolites were identified using a combination of accurate mass, tandem MS, and online database searches. These metabolites include corticosteroids, bilirubin, amino acids, acylcarnitines, and phospholipids; of note, the magnitude of the 24-h variation of these identified metabolites was large, with the mean ratio of oscillation range over MESOR (24-h time series mean) of 65% (95% confidence interval [CI]: 49-81%). Importantly, several of these human plasma metabolites, including specific acylcarnitines and phospholipids, were hitherto not known to be 24-h variant. These findings represent an important baseline and will be useful in guiding the design and interpretation of future metabolite-based studies. (Author correspondence: Jooern.Ang@icr.ac.uk or Florence.Raynaud@icr.ac.uk ).

Journal ArticleDOI
TL;DR: Results reflect the extensive redundancy of the regulation underlying seed metabolism, demonstrate the tight co-ordination of seed metabolism with respect to fruit metabolism, and emphasize the centrality of the amino acid module in the seed metabolic network.
Abstract: To investigate the regulation of seed metabolism and to estimate the degree of metabolic natural variability, metabolite profiling and network analysis were applied to a collection of 76 different homozygous tomato introgression lines (ILs) grown in the field in two consecutive harvest seasons Factorial ANOVA confirmed the presence of 30 metabolite quantitative trait loci (mQTL) Amino acid contents displayed a high degree of variability across the population, with similar patterns across the two seasons, while sugars exhibited significant seasonal fluctuations Upon integration of data for tomato pericarp metabolite profiling, factorial ANOVA identified the main factor for metabolic polymorphism to be the genotypic background rather than the environment or the tissue Analysis of the coefficient of variance indicated greater phenotypic plasticity in the ILs than in the M82 tomato cultivar Broad-sense estimate of heritability suggested that the mode of inheritance of metabolite traits in the seed differed from that in the fruit Correlation-based metabolic network analysis comparing metabolite data for the seed with that for the pericarp showed that the seed network displayed tighter interdependence of metabolic processes than the fruit Amino acids in the seed metabolic network were shown to play a central hub-like role in the topology of the network, maintaining high interactions with other metabolite categories, ie, sugars and organic acids Network analysis identified six exceptionally highly co-regulated amino acids, Gly, Ser, Thr, Ile, Val, and Pro The strong interdependence of this group was confirmed by the mQTL mapping Taken together these results (i) reflect the extensive redundancy of the regulation underlying seed metabolism, (ii) demonstrate the tight co-ordination of seed metabolism with respect to fruit metabolism, and (iii) emphasize the centrality of the amino acid module in the seed metabolic network Finally, the study highlights the added value of integrating metabolic network analysis with mQTL mapping

Journal ArticleDOI
TL;DR: CSF metabolomics in an acute EAE rat model was investigated using targetted LC–MS and GC–MS, suggesting significant changes in CNS metabolism over the course of MBP-induced neuro inflammation.
Abstract: Experimental Autoimmune Encephalomyelitis (EAE) is the most commonly used animal model for Multiple Sclerosis (MScl). CSF metabolomics in an acute EAE rat model was investigated using targetted LC-MS and GC-MS. Acute EAE in Lewis rats was induced by co-injection of Myelin Basic Protein with Complete Freund's Adjuvant. CSF samples were collected at two time points: 10 days after inoculation, which was during the onset of the disease, and 14 days after inoculation, which was during the peak of the disease. The obtained metabolite profiles from the two time points of EAE development show profound differences between onset and the peak of the disease, suggesting significant changes in CNS metabolism over the course of MBP-induced neuroinflammation. Around the onset of EAE the metabolome profile shows significant decreases in arginine, alanine and branched amino acid levels, relative to controls. At the peak of the disease, significant increases in concentrations of multiple metabolites are observed, including glutamine, O-phosphoethanolamine, branched-chain amino acids and putrescine. Observed changes in metabolite levels suggest profound changes in CNS metabolism over the course of EAE. Affected pathways include nitric oxide synthesis, altered energy metabolism, polyamine synthesis and levels of endogenous antioxidants. © 2011 The Author(s).