scispace - formally typeset
Search or ask a question

Showing papers on "Metabolome published in 2016"


Journal ArticleDOI
21 Jul 2016-Nature
TL;DR: It is shown how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals and suggested that microbial targets may have the potential to diminish insulin resistance and reduce the incidence of common metabolic and cardiovascular disorders.
Abstract: Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus are identified as the main species driving the association between biosynthesis of BCAAs and insulin resistance, and in mice we demonstrate that P. copri can induce insulin resistance, aggravate glucose intolerance and augment circulating levels of BCAAs. Our findings suggest that microbial targets may have the potential to diminish insulin resistance and reduce the incidence of common metabolic and cardiovascular disorders.

1,309 citations


Journal ArticleDOI
01 Dec 2016-Cell
TL;DR: In this paper, the authors demonstrate that the intestinal microbiota features oscillating biogeographical localization and metabolome patterns that determine the rhythmic exposure of the intestinal epithelium to different bacterial species and their metabolites over the course of a day.

559 citations


Journal ArticleDOI
TL;DR: An analytic pipeline and visualization tool (metabolograms) is developed to bridge the gap between TCGA transcriptomic profiling and metabolomic data, which enables to assemble an integrated pathway-level metabolic atlas and to demonstrate discordance between transcriptome and metabolome.

477 citations


Journal ArticleDOI
01 Jan 2016-Gut
TL;DR: High consumption of fermentable substrate in vegans was not associated with higher levels of faecal short chain fatty acids, a finding confirmed in a 10-day controlled feeding experiment, and residence in globally distinct societies helps determine the composition of the gut microbiota that influences the production of diet-dependent gut microbial metabolites.
Abstract: Objective The consumption of an agrarian diet is associated with a reduced risk for many diseases associated with a ‘Westernised’ lifestyle. Studies suggest that diet affects the gut microbiota, which subsequently influences the metabolome, thereby connecting diet, microbiota and health. However, the degree to which diet influences the composition of the gut microbiota is controversial. Murine models and studies comparing the gut microbiota in humans residing in agrarian versus Western societies suggest that the influence is large. To separate global environmental influences from dietary influences, we characterised the gut microbiota and the host metabolome of individuals consuming an agrarian diet in Western society. Design and results Using 16S rRNA-tagged sequencing as well as plasma and urinary metabolomic platforms, we compared measures of dietary intake, gut microbiota composition and the plasma metabolome between healthy human vegans and omnivores, sampled in an urban USA environment. Plasma metabolome of vegans differed markedly from omnivores but the gut microbiota was surprisingly similar. Unlike prior studies of individuals living in agrarian societies, higher consumption of fermentable substrate in vegans was not associated with higher levels of faecal short chain fatty acids, a finding confirmed in a 10-day controlled feeding experiment. Similarly, the proportion of vegans capable of producing equol, a soy-based gut microbiota metabolite, was less than that was reported in Asian societies despite the high consumption of soy-based products. Conclusions Evidently, residence in globally distinct societies helps determine the composition of the gut microbiota that, in turn, influences the production of diet-dependent gut microbial metabolites.

423 citations


Journal ArticleDOI
TL;DR: Several of the most intriguing diet-dependent metabolites that may impact host physiology and may therefore be appropriate targets for therapeutic interventions, such as short-chain fatty acids, trimethylamine N-oxide, tryptophan and tyrosine derivatives, and oxidized fatty acids are reviewed.
Abstract: Mass spectrometry- and nuclear magnetic resonance-based metabolomic studies comparing diseased versus healthy individuals have shown that microbial metabolites are often the compounds most markedly altered in the disease state. Recent studies suggest that several of these metabolites that derive from microbial transformation of dietary components have significant effects on physiological processes such as gut and immune homeostasis, energy metabolism, vascular function, and neurological behavior. Here, we review several of the most intriguing diet-dependent metabolites that may impact host physiology and may therefore be appropriate targets for therapeutic interventions, such as short-chain fatty acids, trimethylamine N-oxide, tryptophan and tyrosine derivatives, and oxidized fatty acids. Such interventions will require modulating either bacterial species or the bacterial biosynthetic enzymes required to produce these metabolites, so we briefly describe the current understanding of the bacterial and enzymatic pathways involved in their biosynthesis and summarize their molecular mechanisms of action. We then discuss in more detail the impact of these metabolites on health and disease, and review current strategies to modulate levels of these metabolites to promote human health. We also suggest future studies that are needed to realize the full therapeutic potential of targeting the gut microbiota.

378 citations


Journal ArticleDOI
25 Aug 2016-Cell
TL;DR: A method for the rapid and specific isolation of mitochondria is described and used in tandem with a database of predicted mitochondrial metabolites to measure the matrix concentrations of more than 100 metabolites across various states of respiratory chain (RC) function.

332 citations


Journal ArticleDOI
TL;DR: The use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets as discussed by the authors, which can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases.
Abstract: The gut microbiota is composed of a huge number of different bacteria, which produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activity is affected by environmental stimuli leading to the generation of a wide number of compounds, which influence the host metabolome and human health. Indeed, metabolic profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies.

278 citations


Journal ArticleDOI
10 Jun 2016-Science
TL;DR: The characterization of mitochondrial function in a genetic reference panel of recombinant inbred mice showed a frequent lack of correlation of transcript and protein abundance, enabled the identification of genomic variants of mitochondrial enzymes that caused inborn errors in metabolism, and revealed two genes that appear to function in cholesterol metabolism.
Abstract: Recent improvements in quantitative proteomics approaches, including Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH-MS), permit reproducible large-scale protein measurements across diverse cohorts. Together with genomics, transcriptomics, and other technologies, transomic data sets can be generated that permit detailed analyses across broad molecular interaction networks. Here, we examine mitochondrial links to liver metabolism through the genome, transcriptome, proteome, and metabolome of 386 individuals in the BXD mouse reference population. Several links were validated between genetic variants toward transcripts, proteins, metabolites, and phenotypes. Among these, sequence variants in Cox7a2l alter its protein's activity, which in turn leads to downstream differences in mitochondrial supercomplex formation. This data set demonstrates that the proteome can now be quantified comprehensively, serving as a key complement to transcriptomics, genomics, and metabolomics--a combination moving us forward in complex trait analysis.

258 citations


Journal ArticleDOI
TL;DR: Recent applications of metabolomics are described and its increasing application to study plant responses to environmental (stress-) factors, including drought, salt, low oxygen caused by waterlogging or flooding of the soil, temperature, light and oxidative stress are described.
Abstract: Metabolomics is one omics approach that can be used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include analysis of a wide range of chemical species with diverse physical properties, from ionic inorganic compounds to biochemically derived hydrophilic carbohydrates, organic and amino acids, and a range of hydrophobic lipid-related compounds. This complexitiy brings huge challenges to the analytical technologies employed in current plant metabolomics programs, and powerful analytical tools are required for the separation and characterization of this extremely high compound diversity present in biological sample matrices. The use of mass spectrometry (MS)-based analytical platforms to profile stress-responsive metabolites that allow some plants to adapt to adverse environmental conditions is fundamental in current plant biotechnology research programs for the understanding and development of stress-tolerant plants. In this review, we describe recent applications of metabolomics and emphasize its increasing application to study plant responses to environmental (stress-) factors, including drought, salt, low oxygen caused by waterlogging or flooding of the soil, temperature, light and oxidative stress (or a combination of them). Advances in understanding the global changes occurring in plant metabolism under specific abiotic stress conditions are fundamental to enhance plant fitness and increase stress tolerance. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:620-649, 2016.

243 citations


Journal ArticleDOI
TL;DR: A significant influence of HG feeding is observed in shaping the ruminal bacterial community structure, diversity and composition, with an overall dominance of bacteria of the phylum Firmicutes along with a low abundance of Bacteriodetes in the HG group.
Abstract: Summary Currently, knowledge about the impact of high-grain (HG) feeding on rumen microbiota and metabolome is limited. In this study, a combination of the 454 pyrosequencing strategy and the mass spectrometry-based metabolomics technique was applied to investigate the effects of increased dietary grain (0%, 25% and 50% maize grain) on changes in whole ruminal microbiota and their metabolites using goat as a ruminant model. We observed a significant influence of HG feeding in shaping the ruminal bacterial community structure, diversity and composition, with an overall dominance of bacteria of the phylum Firmicutes along with a low abundance of Bacteriodetes in the HG group. High-grain feeding increased the number of ciliate and methanogens, and decreased the density of anaerobic fungi and the richness of the archaeal community. The metabolomics analysis revealed that HG feeding increased the levels of several toxic, inflammatory and unnatural compounds, including endotoxin, tryptamine, tyramine, histamine and phenylacetate. Correlation analysis on the combined datasets revealed some potential relationships between ruminal metabolites and certain microbial species. Information about these relationships may prove useful in either direct (therapeutic) or indirect (dietary) interventions for ruminal disorders due to microbial compositional shifts, such as ruminal acidosis.

183 citations


Journal ArticleDOI
TL;DR: The results are consistent with and extend the current understanding of the mechanisms of insect chilling tolerance, with proline and glutathione metabolism being the most strongly-supported metabolic pathways associated with increased cold tolerance.
Abstract: Cold tolerance is a key determinant of insect distribution and abundance, and thermal acclimation can strongly influence organismal stress tolerance phenotypes, particularly in small ectotherms like Drosophila. However, there is limited understanding of the molecular and biochemical mechanisms that confer such impressive plasticity. Here, we use high-throughput mRNA sequencing (RNA-seq) and liquid chromatography – mass spectrometry (LC-MS) to compare the transcriptomes and metabolomes of D. melanogaster acclimated as adults to warm (rearing) (21.5 °C) or cold conditions (6 °C). Cold acclimation improved cold tolerance and led to extensive biological reorganization: almost one third of the transcriptome and nearly half of the metabolome were differentially regulated. There was overlap in the metabolic pathways identified via transcriptomics and metabolomics, with proline and glutathione metabolism being the most strongly-supported metabolic pathways associated with increased cold tolerance. We discuss several new targets in the study of insect cold tolerance (e.g. dopamine signaling and Na+-driven transport), but many previously identified candidate genes and pathways (e.g. heat shock proteins, Ca2+ signaling, and ROS detoxification) were also identified in the present study, and our results are thus consistent with and extend the current understanding of the mechanisms of insect chilling tolerance.

Journal ArticleDOI
TL;DR: Novel metabolites that may serve as key small molecules in CRC pathogenesis, confirmed the results from previously reported CRC metabolome studies, and showed networks for metabolic pathway aberrations are identified.
Abstract: Colorectal cancers (CRC) are associated with perturbations in cellular amino acids, nucleotides, pentose-phosphate pathway carbohydrates, and glycolytic, gluconeogenic, and tricarboxylic acid intermediates A non-targeted global metabolome approach was utilized for exploring human CRC, adjacent mucosa, and stool In this pilot study, we identified metabolite profile differences between CRC and adjacent mucosa from patients undergoing colonic resection Metabolic pathway analyses further revealed relationships between complex networks of metabolites Seventeen CRC patients participated in this pilot study and provided CRC, adjacent mucosa ~10 cm proximal to the tumor, and stool Metabolomes were analyzed by gas chromatography-mass spectrometry (GC/MS) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) All of the library standard identifications were confirmed and further analyzed via MetaboLyncTM for metabolic network interactions There were a total of 728 distinct metabolites identified from colonic tissue and stool matrices Nineteen metabolites significantly distinguished CRC from adjacent mucosa in our patient-matched cohort Glucose-6-phosphate and fructose-6-phosphate demonstrated 064-fold and 075-fold lower expression in CRC compared to mucosa, respectively, whereas isobar: betaine aldehyde, N-methyldiethanolamine, and adenylosuccinate had 268-fold and 188-fold higher relative abundance in CRC Eleven of the 19 metabolites had not previously been reported for CRC relevance Metabolic pathway analysis revealed significant perturbations of short-chain fatty acid metabolism, fructose, mannose, and galactose metabolism, and glycolytic, gluconeogenic, and pyruvate metabolism In comparison to the 500 stool metabolites identified from human CRC patients, only 215 of those stool metabolites were also detected in tissue This CRC and stool metabolome investigation identified novel metabolites that may serve as key small molecules in CRC pathogenesis, confirmed the results from previously reported CRC metabolome studies, and showed networks for metabolic pathway aberrations In addition, we found differences between the CRC and stool metabolomes Stool metabolite profiles were limited for direct associations with CRC and adjacent mucosa, yet metabolic pathways were conserved across both matrices Larger patient-matched CRC, adjacent non-cancerous colonic mucosa, and stool cohort studies for metabolite profiling are needed to validate these small molecule differences and metabolic pathway aberrations for clinical application to CRC control, treatment, and prevention

Journal ArticleDOI
TL;DR: It is shown that 0.5% PP administration for 20 weeks alleviated obesity and regulate expression of genes related to lipid metabolism in C57BL/6J mice fed a high-fat/high-sucrose diet, suggesting that PPs influence the gut microbiota and the intestinal metabolome to produce beneficial effects on metabolic homeostasis.
Abstract: Several studies have suggested that flavan-3-ols/procyanidins are associated with a reduced risk of developing obesity and metabolic syndrome. However, the role of highly polymeric procyanidins (PP), which are major non-absorbable flavonoids, in the biological effects, is not completely understood. Here, we show that 0.5% PP administration for 20 weeks alleviated obesity and regulate expression of genes related to lipid metabolism in C57BL/6J mice fed a high-fat/high-sucrose diet. PP-treatment attenuated weight gain and inflammatory effects including lipopolysaccharide and gut permeability. Additionally, metabolic urine profiling using high-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry demonstrated that PP-treatment decreased the levels of endogenous metabolites associated with insulin resistance. Furthermore, microbial 16S rRNA gene sequencing of the cecum demonstrated that PP administration markedly decreased the Firmicutes/Bacteroidetes ratio and increased eight times the proportion of Akkermansia. These data suggest that PPs influence the gut microbiota and the intestinal metabolome to produce beneficial effects on metabolic homeostasis.

Journal ArticleDOI
TL;DR: An integrated approach of metabolomics and transcriptomics was applied to understand regulatory networks associated with biosynthesis of anthocyanins that are differentially regulated in light-red- and dark-purple-colored potato cultivars.
Abstract: To gain insights into the regulatory networks related to anthocyanin biosynthesis and identify key regulatory genes, we performed an integrated analysis of the transcriptome and metabolome in sprouts germinated from three colored potato cultivars: light-red Hongyoung, dark-purple Jayoung, and white Atlantic. We investigated transcriptional and metabolic changes using statistical analyses and gene-metabolite correlation networks. Transcript and metabolite profiles were generated through high-throughput RNA-sequencing data analysis and ultraperformance liquid chromatography quadrupole time-of-flight tandem mass spectrometry, respectively. The identification and quantification of changes in anthocyanin were performed using molecular formula-based mass accuracy and specific features of their MS(2) spectra. Correlation tests of anthocyanin contents and transcriptional changes showed 823 strong correlations (correlation coefficient, R (2)>0.9) between 22 compounds and 119 transcripts categorized into flavonoid metabolism, hormones, transcriptional regulation, and signaling. The connection network of anthocyanins and genes showed a regulatory system involved in the pigmentation of light-red Hongyoung and dark-purple Jayoung potatoes, suggesting that this systemic approach is powerful for investigations into novel genes that are potential targets for the breeding of new valuable potato cultivars.

Journal ArticleDOI
TL;DR: In this article, a non-targeted metabolomics approach based on ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was applied to comprehensively profile the variations of metabolites in tea samples with various fermentation durations of 0, 1, 2, 4, 6, 8, 10, 12 and 14h.

Journal ArticleDOI
TL;DR: This review discusses the advantages of metabolome profiling and main obstacles limiting progress in systems biology, and suggests integrated data derived from multi-omics approaches will provide a deeper understanding of entire biological systems.
Abstract: Mass spectrometry-based metabolome profiling became the method of choice in systems biology approaches and aims to enhance biological understanding of complex biological systems. Genomics, transcriptomics, and proteomics are well established technologies and are commonly used by many scientists. In comparison, metabolomics is an emerging field and has not reached such high-throughput, routine and coverage than other omics technologies. Nevertheless, substantial improvements were achieved during the last years. Integrated data derived from multi-omics approaches will provide a deeper understanding of entire biological systems. Metabolome profiling is mainly hampered by its diversity, variation of metabolite concentration by several orders of magnitude and biological data interpretation. Thus, multiple approaches are required to cover most of the metabolites. No software tool is capable of comprehensively translating all the data into a biologically meaningful context yet. In this review, we discuss the advantages of metabolome profiling and main obstacles limiting progress in systems biology.

Journal ArticleDOI
15 Jun 2016
TL;DR: Research is ongoing to examine the effect of pre/probiotics and/or FODMAP reduced diets on both the gut microbiome and its metabolome in an effort to define the healthy diet in patients with IBD.
Abstract: Inflammatory Bowel Disease (IBD) is a multifactorial disorder that conceptually occurs as a result of altered immune responses to commensal and/or pathogenic gut microbes in individuals most susceptible to the disease. During Crohn's Disease (CD) or Ulcerative Colitis (UC), two components of the human IBD, distinct stages define the disease onset, severity, progression and remission. Epigenetic, environmental (microbiome, metabolome) and nutritional factors are important in IBD pathogenesis. While the dysbiotic microbiota has been proposed to play a role in disease pathogenesis, the data on IBD and diet are still less convincing. Nonetheless, studies are ongoing to examine the effect of pre/probiotics and/or FODMAP reduced diets on both the gut microbiome and its metabolome in an effort to define the healthy diet in patients with IBD. Knowledge of a unique metabolomic fingerprint in IBD could be useful for diagnosis, treatment and detection of disease pathogenesis.

Journal ArticleDOI
TL;DR: Investigation indicated that flavedo accumulates more flavonoids while juice sacs contain more amino acids, and cluster analysis based on the levels of metabolites detected in 47 individual Citrus accessions clearly grouped them into four distinct clusters: pummelos and grapefruits, lemons, sweet oranges and mandarins, while the cluster of pummels and Grapefruits lay distinctly apart from the other three species.

Journal ArticleDOI
TL;DR: The most recent version of ECMDB (ECMDB 2.0) is described, which provides a comprehensive update of the database that was previously described in the 2013 NAR Database Issue and details many of the additions and improvements made to the database over that time.
Abstract: ECMDB or the Escherichia coli Metabolome Database (http://www.ecmdb.ca) is a comprehensive database containing detailed information about the genome and metabolome of E. coli (K-12). First released in 2012, the ECMDB has undergone substantial expansion and many modifications over the past 4 years. This manuscript describes the most recent version of ECMDB (ECMDB 2.0). In particular, it provides a comprehensive update of the database that was previously described in the 2013 NAR Database Issue and details many of the additions and improvements made to the ECMDB over that time. Some of the most important or significant enhancements include a 13-fold increase in the number of metabolic pathway diagrams (from 125 to 1650), a 3-fold increase in the number of compounds linked to pathways (from 1058 to 3280), the addition of dozens of operon/metabolite signalling pathways, a 44% increase in the number of compounds in the database (from 2610 to 3760), a 7-fold increase in the number of compounds with NMR or MS spectra (from 412 to 3261) and a massive increase in the number of external links to other E. coli or chemical resources. These additions, along with many other enhancements aimed at improving the ease or speed of querying, searching and viewing the data within ECMDB should greatly facilitate the understanding of not only the metabolism of E. coli, but also allow the in-depth exploration of its extensive metabolic networks, its many signalling pathways and its essential biochemistry.

Journal ArticleDOI
TL;DR: AD-like pathology affects greatly on both the brain and blood metabolomes, although there appears to be a clear temporal sequence whereby changes to brain metabolites precede those in blood.

Journal ArticleDOI
TL;DR: The detailed metabolic interactions with cytokines indicate that targeted metabolic interventions may be useful during life-threatening crises related to severe acute infection and inflammation.
Abstract: Influenza is a significant health concern worldwide. Viral infection induces local and systemic activation of the immune system causing attendant changes in metabolism. High-resolution metabolomics (HRM) uses advanced mass spectrometry and computational methods to measure thousands of metabolites inclusive of most metabolic pathways. We used HRM to identify metabolic pathways and clusters of association related to inflammatory cytokines in lungs of mice with H1N1 influenza virus infection. Infected mice showed progressive weight loss, decreased lung function, and severe lung inflammation with elevated cytokines [interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ] and increased oxidative stress via cysteine oxidation. HRM showed prominent effects of influenza virus infection on tryptophan and other amino acids, and widespread effects on pathways including purines, pyrimidines, fatty acids, and glycerophospholipids. A metabolome-wide association study (MWAS) of the aforementioned inflammatory cytokines was used to determine the relationship of metabolic responses to inflammation during infection. This cytokine-MWAS (cMWAS) showed that metabolic associations consisted of distinct and shared clusters of 396 metabolites highly correlated with inflammatory cytokines. Strong negative associations of selected glycosphingolipid, linoleate, and tryptophan metabolites with IFN-γ contrasted strong positive associations of glycosphingolipid and bile acid metabolites with IL-1β, TNF-α, and IL-10. Anti-inflammatory cytokine IL-10 had strong positive associations with vitamin D, purine, and vitamin E metabolism. The detailed metabolic interactions with cytokines indicate that targeted metabolic interventions may be useful during life-threatening crises related to severe acute infection and inflammation.

Journal ArticleDOI
TL;DR: Inbrain and liver, profiles of lipids revealed involvement of β-oxidation and biosynthesis of saturated and unsaturated fatty acids in PFOA-induced hepatotoxicity, while alterations in metabolism of arachidonic acid suggesting potential of P FOA to cause inflammation response in liver.
Abstract: Perfluorooctanoic acid (PFOA), a perfluoroalkyl acid, can result in hepatotoxicity and neurobehavioral effects in animals. The metabolome, which serves as a connection among transcriptome, proteome and toxic effects, provides pathway-based insights into effects of PFOA. Since understanding of changes in the metabolic profile during hepatotoxicity and neurotoxicity were still incomplete, a high-throughput targeted metabolomics approach (278 metabolites) was used to investigate effects of exposure to PFOA for 28 d on brain and liver of male Balb/c mice. Results of multivariate statistical analysis indicated that PFOA caused alterations in metabolic pathways in exposed individuals. Pathway analysis suggested that PFOA affected metabolism of amino acids, lipids, carbohydrates and energetics. Ten and 18 metabolites were identified as potential unique biomarkers of exposure to PFOA in brain and liver, respectively. In brain, PFOA affected concentrations of neurotransmitters, including serotonin, dopamine, norepinephrine and glutamate in brain, which provides novel insights into mechanisms of PFOA-induced neurobehavioral effects. In liver, profiles of lipids revealed involvement of β-oxidation and biosynthesis of saturated and unsaturated fatty acids in PFOA-induced hepatotoxicity, while alterations in metabolism of arachidonic acid suggesting potential of PFOA to cause inflammation response in liver. These results provide insight into the mechanism and biomarkers for PFOA-induced effects.

Journal ArticleDOI
TL;DR: High correlations were observed between perturbed gut microbiome and altered metabolic profiles and perturbations finally resulted in intestinal inflammation and abnormal intestinal permeability, which were confirmed by the histologic changes in colon and remarkable increase of lipopolysaccharide (LPS) and diamine oxidase (DAO) in the serum of CPF-treated mice.

Journal ArticleDOI
TL;DR: To mark its 18-year-old ‘coming of age’, two of the co-authors of that paper review the genesis of metabolomics, whence it has come and where it may be going.
Abstract: Background The term ‘metabolome’ was introduced to the scientific literature in September 1998.

Journal ArticleDOI
TL;DR: It is demonstrated that the chemical makeup of CF sputum is a complex milieu of microbial, host and xenobiotic molecules, which may have a significant role in CF hyperinflammation.
Abstract: Cystic fibrosis (CF) lungs are filled with thick mucus that obstructs airways and facilitates chronic infections. Pseudomonas aeruginosa is a significant pathogen of this disease that produces a variety of toxic small molecules. We used molecular networking-based metabolomics to investigate the chemistry of CF sputa and assess how the microbial molecules detected reflect the microbiome and clinical culture history of the patients. Metabolites detected included xenobiotics, P. aeruginosa specialized metabolites and host sphingolipids. The clinical culture and microbiome profiles did not correspond to the detection of P. aeruginosa metabolites in the same samples. The P. aeruginosa molecules that were detected in sputum did not match those from laboratory cultures. The pseudomonas quinolone signal (PQS) was readily detectable from cultured strains, but absent from sputum, even when its precursor molecules were present. The lack of PQS production in vivo is potentially due to the chemical nature of the CF lung environment, indicating that culture-based studies of this pathogen may not explain its behavior in the lung. The most differentially abundant molecules between CF and non-CF sputum were sphingolipids, including sphingomyelins, ceramides and lactosylceramide. As these highly abundant molecules contain the inflammatory mediator ceramide, they may have a significant role in CF hyperinflammation. This study demonstrates that the chemical makeup of CF sputum is a complex milieu of microbial, host and xenobiotic molecules. Detection of a bacterium by clinical culturing and 16S rRNA gene profiling do not necessarily reflect the active production of metabolites from that bacterium in a sputum sample.

Journal ArticleDOI
TL;DR: The results suggest that RPS not only alters the composition of the gut microbial community but also modulates the metabolic pathway of microbial metabolism, which may further affect the hindgut health of the host.
Abstract: Currently, knowledge about the impact of long-term intake of high resistant starch diet on pig hindgut microbiota and metabolite profile is limited. In this study, a combination of the pyrosequencing and the mass spectrometry (MS)-based metabolomics techniques were used to investigate the effects of a raw potato starch (RPS, high in resistant starch) diet on microbial composition and microbial metabolites in the hindgut of pig. The results showed that Coprococcus, Ruminococcus, and Turicibacter increased significantly, while Sarcina and Clostridium decreased in relative abundances in the hindgut of pigs fed RPS. The metabolimic analysis revealed that RPS significantly affected starch and sucrose metabolites, amino acid turnover or protein biosynthesis, lipid metabolites, glycolysis, the pentose phosphate pathway, inositol phosphate metabolism, and nucleotide metabolism. Furthermore, a Pearson’s correlation analysis showed that Ruminococcus and Coprococcus were positively correlated with glucose-6-phosphate, maltose, arachidonic acid, 9, 12-octadecadienoic acid, oleic acid, phosphate, but negatively correlated with α-aminobutyric acid. However, the correlation of Clostridium and Sarcina with these compounds was in the opposite direction. The results suggest that RPS not only alters the composition of the gut microbial community but also modulates the metabolic pathway of microbial metabolism, which may further affect the hindgut health of the host.

Journal ArticleDOI
TL;DR: The biochemical result showed that NOL can alleviate the kidney impairment induced by KYDS and showed that the metabolomics method was a powerful approach for studying the phenotypic characterization of disease’s syndrome during disease prevention and its intervention mechanism.
Abstract: This paper was designed to investigate the phenotypic characterization of Nanshi Oral Liquid (NOL) alters metabolic signatures of the 'Kidney Yang Deficiency syndrome' (KYDS). Urine metabolites were profiled by UPLC-ESI-Q-TOF-HDMS. The significantly changed metabolites such as xanthurenic acid, 4,8-dihydroxyquinoline, 3-methyldioxyindole, 4,6-dihydroxyquinoline, kynurenic acid, hippuric acid, taurine, tyramine, and 3-metanephrine, had been identified, and were related to the disturbance in tyrosine metabolism, steroid hormone biosynthesis, taurine and hypotaurine metabolism, tryptophan metabolism, phenylalanine metabolism and lysine degradation, which were helpful to further understanding the KYDS and intervention mechanism of NOL. The biochemical result showed that NOL can alleviate the kidney impairment induced by KYDS. Metabolomics results indicated the significantly changed metabolites were found to be reasonable in explaining the action mechanism of NOL. Interestingly, the effectiveness of NOL against KYDS was proved using the established metabolomics method and regulated the biomarkers as well as adjusted the metabolic disorder pathways. NOL had potentially pharmacological effect through regulating multiple perturbed pathways to normal state. This work showed that the metabolomics method was a powerful approach for studying the phenotypic characterization of disease's syndrome during disease prevention and its intervention mechanism.

Journal ArticleDOI
TL;DR: This study shows that urine is a source of biomarkers of clinical utility in IMIDs, and finds that IMIDs show similar metabolic changes, particularly between clinically similar diseases and, for the first time, the presence of hub metabolites.
Abstract: Immune-mediated inflammatory diseases (IMIDs) are a group of complex and prevalent diseases where disease diagnostic and activity monitoring is highly challenging. The determination of the metabolite profiles of biological samples is becoming a powerful approach to identify new biomarkers of clinical utility. In order to identify new metabolite biomarkers of diagnosis and disease activity, we have performed the first large-scale profiling of the urine metabolome of the six most prevalent IMIDs: rheumatoid arthritis, psoriatic arthritis, psoriasis, systemic lupus erythematosus, Crohn’s disease, and ulcerative colitis. Using nuclear magnetic resonance, we analyzed the urine metabolome in a discovery cohort of 1210 patients and 100 controls. Within each IMID, two patient subgroups were recruited representing extreme disease activity (very high vs. very low). Metabolite association analysis with disease diagnosis and disease activity was performed using multivariate linear regression in order to control for the effects of clinical, epidemiological, or technical variability. After multiple test correction, the most significant metabolite biomarkers were validated in an independent cohort of 1200 patients and 200 controls. In the discovery cohort, we identified 28 significant associations between urine metabolite levels and disease diagnosis and three significant metabolite associations with disease activity (PFDR < 0.05). Using the validation cohort, we validated 26 of the diagnostic associations and all three metabolite associations with disease activity (PFDR < 0.05). Combining all diagnostic biomarkers using multivariate classifiers we obtained a good disease prediction accuracy in all IMIDs and particularly high in inflammatory bowel diseases. Several of the associated metabolites were found to be commonly altered in multiple IMIDs, some of which can be considered as hub biomarkers. The analysis of the metabolic reactions connecting the IMID-associated metabolites showed an over-representation of citric acid cycle, phenylalanine, and glycine-serine metabolism pathways. This study shows that urine is a source of biomarkers of clinical utility in IMIDs. We have found that IMIDs show similar metabolic changes, particularly between clinically similar diseases and we have found, for the first time, the presence of hub metabolites. These findings represent an important step in the development of more efficient and less invasive diagnostic and disease monitoring methods in IMIDs.

Journal ArticleDOI
TL;DR: It is argued that if a causative role can be demonstrated in follow-up mechanistic studies—for example, using gnotobiotic models—such functional strains have the potential to become biomarkers for diagnostics and targets for therapeutics.
Abstract: The gut microbiota has been linked with metabolic diseases in humans, but demonstration of causality remains a challenge. The gut microbiota, as a complex microbial ecosystem, consists of hundreds of individual bacterial species, each of which contains many strains with high genetic diversity. Recent advances in genomic and metabolomic technologies are facilitating strain-level dissection of the contribution of the gut microbiome to metabolic diseases. Interventional studies and correlation analysis between variations in the microbiome and metabolome, captured by longitudinal sampling, can lead to the identification of specific bacterial strains that may contribute to human metabolic diseases via the production of bioactive metabolites. For example, high-quality draft genomes of prevalent gut bacterial strains can be assembled directly from metagenomic datasets using a canopy-based algorithm. Specific metabolites associated with a disease phenotype can be identified by nuclear magnetic resonance-based metabolomics of urine and other samples. Such multi-omics approaches can be employed to identify specific gut bacterial genomes that are not only correlated with detected metabolites but also encode the genes required for producing the precursors of those metabolites in the gut. Here, we argue that if a causative role can be demonstrated in follow-up mechanistic studies—for example, using gnotobiotic models—such functional strains have the potential to become biomarkers for diagnostics and targets for therapeutics.

Journal ArticleDOI
TL;DR: MatchWeiz, a multi-module strategy using a probabilistic approach to match library and experimental data, allows efficient and high-confidence identification of dozens of metabolites in model and exotic plants, including metabolites not previously reported in plants or found in few plant species to date.
Abstract: Annotation of metabolites is an essential, yet problematic, aspect of mass spectrometry (MS)-based metabolomics assays. The current repertoire of definitive annotations of metabolite spectra in public MS databases is limited and suffers from lack of chemical and taxonomic diversity. Furthermore, the heterogeneity of the data prevents the development of universally applicable metabolite annotation tools. Here we present a combined experimental and computational platform to advance this key issue in metabolomics. WEIZMASS is a unique reference metabolite spectral library developed from high-resolution MS data acquired from a structurally diverse set of 3,540 plant metabolites. We also present MatchWeiz, a multi-module strategy using a probabilistic approach to match library and experimental data. This strategy allows efficient and high-confidence identification of dozens of metabolites in model and exotic plants, including metabolites not previously reported in plants or found in few plant species to date.