scispace - formally typeset
Search or ask a question

Showing papers by "James Hone published in 2016"



Journal ArticleDOI
TL;DR: The presented method readily lends itself to fabrication of van der Waals heterostructures in both ambient and controlled atmospheres, while the ability to assemble pre-patterned layers paves the way for complex three-dimensional architectures.
Abstract: The assembly of individual two-dimensional materials into van der Waals heterostructures enables the construction of layered three-dimensional materials with desirable electronic and optical properties. A core problem in the fabrication of these structures is the formation of clean interfaces between the individual two-dimensional materials which would affect device performance. We present here a technique for the rapid batch fabrication of van der Waals heterostructures, demonstrated by the controlled production of 22 mono-, bi- and trilayer graphene stacks encapsulated in hexagonal boron nitride with close to 100% yield. For the monolayer devices, we found semiclassical mean-free paths up to 0.9 μm, with the narrowest samples showing clear indications of the transport being affected by boundary scattering. The presented method readily lends itself to fabrication of van der Waals heterostructures in both ambient and controlled atmospheres, while the ability to assemble pre-patterned layers paves the way for complex three-dimensional architectures.

490 citations


Journal ArticleDOI
TL;DR: In this article, non-equilibrium photo-induced plasmons in a high-mobility graphene monolayer were investigated at infrared wavelengths, and the properties of carrier relaxation in heterostructures based on high-purity graphene were revealed.
Abstract: Non-equilibrium photoinduced plasmons in a high-mobility graphene monolayer are investigated at infrared wavelengths. The success of metal-based plasmonics for manipulating light at the nanoscale has been empowered by imaginative designs and advanced nano-fabrication. However, the fundamental optical and electronic properties of elemental metals, the prevailing plasmonic media, are difficult to alter using external stimuli. This limitation is particularly restrictive in applications that require modification of the plasmonic response at sub-picosecond timescales. This handicap has prompted the search for alternative plasmonic media1,2,3, with graphene emerging as one of the most capable candidates for infrared wavelengths. Here we visualize and elucidate the properties of non-equilibrium photo-induced plasmons in a high-mobility graphene monolayer4. We activate plasmons with femtosecond optical pulses in a specimen of graphene that otherwise lacks infrared plasmonic response at equilibrium. In combination with static nano-imaging results on plasmon propagation, our infrared pump–probe nano-spectroscopy investigation reveals new aspects of carrier relaxation in heterostructures based on high-purity graphene.

328 citations


Journal ArticleDOI
TL;DR: In this article, a field-induced quantum metal phase emerges in NbSe2, whose behavior is consistent with the Bose-metal model, and it is shown that two-dimensional materials are not expected to be metallic at low temperatures.
Abstract: Owing to electron localization, two-dimensional materials are not expected to be metallic at low temperatures, but a field-induced quantum metal phase emerges in NbSe2, whose behaviour is consistent with the Bose-metal model.

265 citations


Journal ArticleDOI
30 Sep 2016-Science
TL;DR: This work employs transverse magnetic focusing to probe the propagation of carriers across an electrostatically defined graphene junction, finding agreement with the predicted Snell’s law for electrons, including the observation of both positive and negative refraction.
Abstract: Electrons transmitted across a ballistic semiconductor junction are expected to undergo refraction, analogous to light rays across an optical boundary. In graphene, the linear dispersion and zero-gap band structure admit highly transparent p-n junctions by simple electrostatic gating. Here, we employ transverse magnetic focusing to probe the propagation of carriers across an electrostatically defined graphene junction. We find agreement with the predicted Snell’s law for electrons, including the observation of both positive and negative refraction. Resonant transmission across the p-n junction provides a direct measurement of the angle-dependent transmission coefficient. Comparing experimental data with simulations reveals the crucial role played by the effective junction width, providing guidance for future device design. Our results pave the way for realizing electron optics based on graphene p-n junctions.

264 citations


Journal ArticleDOI
TL;DR: This work demonstrates that in an oxygen-activated chemical vapour deposition (CVD) process, half-millimetre size, Bernal-stacked BLG single crystals can be synthesized on Cu and discovers new microscopic steps governing the growth of the 2nd graphene layer below the 1st layer.
Abstract: Large, bilayer graphene single crystals can be grown by oxygen-activated chemical vapour deposition. Bernal (AB)-stacked bilayer graphene (BLG) is a semiconductor whose bandgap can be tuned by a transverse electric field, making it a unique material for a number of electronic and photonic devices1,2,3. A scalable approach to synthesize high-quality BLG is therefore critical, which requires minimal crystalline defects in both graphene layers4,5 and maximal area of Bernal stacking, which is necessary for bandgap tunability6. Here we demonstrate that in an oxygen-activated chemical vapour deposition (CVD) process, half-millimetre size, Bernal-stacked BLG single crystals can be synthesized on Cu. Besides the traditional ‘surface-limited’ growth mechanism for SLG (1st layer), we discovered new microscopic steps governing the growth of the 2nd graphene layer below the 1st layer as the diffusion of carbon atoms through the Cu bulk after complete dehydrogenation of hydrocarbon molecules on the Cu surface, which does not occur in the absence of oxygen. Moreover, we found that the efficient diffusion of the carbon atoms present at the interface between Cu and the 1st graphene layer further facilitates growth of large domains of the 2nd layer. The CVD BLG has superior electrical quality, with a device on/off ratio greater than 104, and a tunable bandgap up to ∼100 meV at a displacement field of 0.9 V nm−1.

259 citations



Journal ArticleDOI
TL;DR: In this article, it was shown that the reduced crystal symmetry of ReS2 leads to anisotropic optical properties that persist from the bulk down to the monolayer limit.
Abstract: Rhenium disulfide (ReS2), a layered group VII transition metal dichalcogenide, has been studied by optical spectroscopy. We demonstrate that the reduced crystal symmetry, as compared to the molybdenum and tungsten dichalcogenides, leads to anisotropic optical properties that persist from the bulk down to the monolayer limit. We find that the direct optical gap blueshifts from 1.47 eV in the bulk to 1.61 eV in the monolayer limit. In the ultrathin limit, we observe polarization-dependent absorption and polarized emission from the band-edge optical transitions. We thus establish ultrathin ReS2 as a birefringent material with strongly polarized direct optical transitions that vary in energy and orientation with sample thickness.

225 citations


Journal ArticleDOI
TL;DR: Large-area "in situ" transition-metal substitution doping for chemical-vapor-deposited semiconducting transition- metal-dichalcogenide monolayers deposited on dielectric substrates is demonstrated.
Abstract: Large-area "in situ" transition-metal substitution doping for chemical-vapor-deposited semiconducting transition-metal-dichalcogenide monolayers deposited on dielectric substrates is demonstrated. In this approach, the transition-metal substitution is stable and preserves the monolayer's semiconducting nature, along with other attractive characteristics, including direct-bandgap photoluminescence.

189 citations


Journal ArticleDOI
TL;DR: The authors' measurements reveal contrasting trends in the NRET rate from the quantum dot to the van der Waals material as a function of thickness, which increases significantly with increasing layer thickness of graphene, but decreases with increasing thickness of MoS2 layers.
Abstract: We report efficient nonradiative energy transfer (NRET) from core–shell, semiconducting quantum dots to adjacent two-dimensional sheets of graphene and MoS2 of single- and few-layer thickness. We observe quenching of the photoluminescence (PL) from individual quantum dots and enhanced PL decay rates in time-resolved PL, corresponding to energy transfer rates of 1–10 ns–1. Our measurements reveal contrasting trends in the NRET rate from the quantum dot to the van der Waals material as a function of thickness. The rate increases significantly with increasing layer thickness of graphene, but decreases with increasing thickness of MoS2 layers. A classical electromagnetic theory accounts for both the trends and absolute rates observed for the NRET. The countervailing trends arise from the competition between screening and absorption of the electric field of the quantum dot dipole inside the acceptor layers. We extend our analysis to predict the type of NRET behavior for the near-field coupling of a chromophore...

186 citations


Journal ArticleDOI
TL;DR: Strain-gated flexible optoelectronics are reported based on monolayer MoS2 using piezoelectric polarization created at the metal-MoS2 interface to modulate the separation/transport of photogenerated carriers and the piezophototronic effect is applied to implement atomic-layer-thick phototransistor.
Abstract: Strain-gated flexible optoelectronics are reported based on monolayer MoS2 . Utilizing the piezoelectric polarization created at the metal-MoS2 interface to modulate the separation/transport of photogenerated carriers, the piezophototronic effect is applied to implement atomic-layer-thick phototransistor. Coupling between piezoelectricity and photogenerated carriers may enable the development of novel optoelectronics.

Journal ArticleDOI
TL;DR: High temporal- and spatial-resolution tracking of contractile forces by plating cells on sub-micrometre elastomeric pillars finds that actomyosin-based sarcomere-like contractile units (CUs) simultaneously moved opposing pillars in net steps of ∼2.5 nm, independent of rigidity, which concludes that tropomyOSin 2.1 acts as a suppressor of growth on soft matrices by supporting proper rigidity sensing.
Abstract: Cells test the rigidity of the extracellular matrix by applying forces to it through integrin adhesions. Recent measurements show that these forces are applied by local micrometre-scale contractions, but how contraction force is regulated by rigidity is unknown. Here we performed high temporal- and spatial-resolution tracking of contractile forces by plating cells on sub-micrometre elastomeric pillars. We found that actomyosin-based sarcomere-like contractile units (CUs) simultaneously moved opposing pillars in net steps of ∼2.5 nm, independent of rigidity. What correlated with rigidity was the number of steps taken to reach a force level that activated recruitment of α-actinin to the CUs. When we removed actomyosin restriction by depleting tropomyosin 2.1, we observed larger steps and higher forces that resulted in aberrant rigidity sensing and growth of non-transformed cells on soft matrices. Thus, we conclude that tropomyosin 2.1 acts as a suppressor of growth on soft matrices by supporting proper rigidity sensing.

Journal ArticleDOI
TL;DR: The magnetic exchange field induced by an adjacent magnetic insulator enables efficient control of local spin generation and spin modulation in 2D devices without compromising the delicate material structures and provides a key functionality for future spin logic and memory devices based on emerging 2D materials in classical and quantum information processing.
Abstract: Exploiting 2D materials for spintronic applications can potentially realize next-generation devices featuring low power consumption and quantum operation capability. The magnetic exchange field (MEF) induced by an adjacent magnetic insulator enables efficient control of local spin generation and spin modulation in 2D devices without compromising the delicate material structures. Using graphene as a prototypical 2D system, we demonstrate that its coupling to the model magnetic insulator (EuS) produces a substantial MEF (>14 T) with the potential to reach hundreds of tesla, which leads to orders-of-magnitude enhancement of the spin signal originating from the Zeeman spin Hall effect. Furthermore, the new ferromagnetic ground state of Dirac electrons resulting from the strong MEF may give rise to quantized spin-polarized edge transport. The MEF effect shown in our graphene/EuS devices therefore provides a key functionality for future spin logic and memory devices based on emerging 2D materials in classical and quantum information processing.

Journal ArticleDOI
TL;DR: In this article, gate-modulated Andreev reflections across the low-disorder van der Waals interface formed between graphene and the superconducting NbSe have been investigated.
Abstract: Andreev reflection occurs at the interface of a metal and a superconductor when an incident electron in the metal gets ‘reflected’ as a hole travelling on the same path. Replace the metal with graphene and specular reflection may instead take place. Electrons incident from a normal metal onto a superconductor are reflected back as holes—a process called Andreev reflection1,2,3. In a normal metal where the Fermi energy is much larger than a typical superconducting gap, the reflected hole retraces the path taken by the incident electron. In graphene with low disorder, however, the Fermi energy can be tuned to be smaller than the superconducting gap. In this unusual limit, the holes are expected to be reflected specularly at the superconductor–graphene interface owing to the onset of interband Andreev processes, where the effective mass of the reflected holes changes sign4,5. Here we present measurements of gate-modulated Andreev reflections across the low-disorder van der Waals interface formed between graphene and the superconducting NbSe2. We find that the conductance across the graphene–superconductor interface exhibits a characteristic suppression when the Fermi energy is tuned to values smaller than the superconducting gap, a hallmark for the transition between intraband retro Andreev reflections and interband specular Andreev reflections.

Journal ArticleDOI
TL;DR: The electronic structure measurements reported here, including the evolution of the effective mass with twist-angle, provide new insight into the physics of twisted transition-metal dichalcogenide bilayers and serve as a guide for the practical design of MoS2 optoelectronic and spin-/valley-tronic devices.
Abstract: Using angle-resolved photoemission on micrometer-scale sample areas, we directly measure the interlayer twist angle-dependent electronic band structure of bilayer molybdenum-disulfide (MoS2). Our measurements, performed on arbitrarily stacked bilayer MoS2 flakes prepared by chemical vapor deposition, provide direct evidence for a downshift of the quasiparticle energy of the valence band at the Brillouin zone center (Γ point) with the interlayer twist angle, up to a maximum of 120 meV at a twist angle of ∼40°. Our direct measurements of the valence band structure enable the extraction of the hole effective mass as a function of the interlayer twist angle. While our results at Γ agree with recently published photoluminescence data, our measurements of the quasiparticle spectrum over the full 2D Brillouin zone reveal a richer and more complicated change in the electronic structure than previously theoretically predicted. The electronic structure measurements reported here, including the evolution of the ef...

Journal ArticleDOI
27 Jan 2016-ACS Nano
TL;DR: This study demonstrates that the finite shear strength between individual layers could explain the experimentally measured size-dependent strength with thickness scaling in MLG sheets and reveals an atomic level interlayer slippage process.
Abstract: Understanding the deformation mechanisms in multilayer graphene (MLG), an attractive material used in nanodevices as well as in the reinforcement of nanocomposites, is critical yet challenging due to difficulties in experimental characterization and the spatiotemporal limitations of atomistic modeling. In this study, we combine nanomechanical experiments with coarse-grained molecular dynamics (CG-MD) simulations to elucidate the mechanisms of deformation and failure of MLG sheets. Elastic properties of graphene sheets with one to three layers are measured using film deflection tests. A nonlinear behavior in the force vs deflection curves for MLGs is observed in both experiments and simulations: during loading/unloading cycles, MLGs dissipate energy through a “recoverable slippage” mechanism. The CG-MD simulations further reveal an atomic level interlayer slippage process and suggest that the dissipated energy scales with film perimeter. Moreover, our study demonstrates that the finite shear strength betwe...

Journal ArticleDOI
TL;DR: Non-invasive optoelectronic nanoscopy is presented and applied to measure the optical and electronic properties of graphene devices locally by combining scanning near-field infrared Nanoscopy with electrical read-out, allowing infrared photocurrent mapping at length scales of tens of nanometres.
Abstract: Optoelectronic devices utilizing graphene have demonstrated unique capabilities and performances beyond state-of-the-art technologies. However, requirements in terms of device quality and uniformity are demanding. A major roadblock towards high-performance devices are nanoscale variations of the graphene device properties, impacting their macroscopic behaviour. Here we present and apply non-invasive optoelectronic nanoscopy to measure the optical and electronic properties of graphene devices locally. This is achieved by combining scanning near-field infrared nanoscopy with electrical read-out, allowing infrared photocurrent mapping at length scales of tens of nanometres. Using this technique, we study the impact of edges and grain boundaries on the spatial carrier density profiles and local thermoelectric properties. Moreover, we show that the technique can readily be applied to encapsulated graphene devices. We observe charge build-up near the edges and demonstrate a solution to this issue.

Journal ArticleDOI
TL;DR: Using a combination of scanning photocurrent microscopy (SPCM) and time-resolved microwave conductivity (TRMC) measurements, the diffusion and recombination of photoexcited charges in CH3NH3PbI3 perovskite single crystals are monitored.
Abstract: Using a combination of scanning photocurrent microscopy (SPCM) and time-resolved microwave conductivity (TRMC) measurements, we monitor the diffusion and recombination of photoexcited charges in CH3NH3PbI3 perovskite single crystals. The majority carrier type was controlled by growing crystals in the presence or absence of air, allowing the diffusion lengths of electrons (LDe–) and holes (LDh+) to be directly imaged with SPCM (LDe– = 10–28 μm, LDh+ = 27–65 μm). TRMC measurements reveal a photogenerated carrier mobility (μh + μe) of 115 ± 15 cm2 V–1 s–1 and recombination that depends on the excitation intensity. From the intensity dependence of the recombination kinetics and by accounting for carrier diffusion away from the point of photogeneration, we extract a second-order recombination rate constant (krad = 5 ± 3 × 10–10 cm3/s) that is consistent with the predicted radiative rate. First-order recombination at low photoexcited carrier density (knrp-type = 1.0 ± 0.3 × 105 s–1, knrn-type = 1.5 ± 0.3 × 105 ...

Journal ArticleDOI
TL;DR: In the momentum drag dominated regime, excellent quantitative agreement with the density and temperature dependence predicted for double bilayer graphene is found.
Abstract: We report on an experimental measurement of Coulomb drag in a double quantum well structure consisting of bilayer-bilayer graphene, separated by few layer hexagonal boron nitride. At low temperatures and intermediate densities, a novel negative drag response with an inverse sign is observed, distinct from the momentum and energy drag mechanisms previously reported in double monolayer graphene. By varying the device aspect ratio, the negative drag component is suppressed and a response consistent with pure momentum drag is recovered. In the momentum drag dominated regime, excellent quantitative agreement with the density and temperature dependence predicted for double bilayer graphene is found.

Journal ArticleDOI
TL;DR: It is shown that α-actinin links local contractile units and the global actin flow forces at the cell edge and a novel model is presented based on these results.
Abstract: During spreading and migration, the leading edges of cells undergo periodic protrusion-retraction cycles. The functional purpose of these cycles is unclear. Here, using submicrometer polydimethylsiloxane pillars as substrates for cell spreading, we show that periodic edge retractions coincide with peak forces produced by local contractile units (CUs) that assemble and disassemble along the cell edge to test matrix rigidity. We find that, whereas actin rearward flow produces a relatively constant force inward, the peak of local contractile forces by CUs scales with rigidity. The cytoskeletal protein α-actinin is shared between these two force-producing systems. It initially localizes to the CUs and subsequently moves inward with the actin flow. Knockdown of α-actinin causes aberrant rigidity sensing, loss of CUs, loss of protrusion-retraction cycles, and, surprisingly, enables the cells to proliferate on soft matrices. We present a model based on these results in which local CUs drive rigidity sensing and adhesion formation.

Journal ArticleDOI
TL;DR: An ambipolar dual-channel field-effect transistor (FET) with a WSe2 /MoS2 heterostructure formed by separately controlled individual channel layers is demonstrated and shows a switchable ambipolar behavior.
Abstract: An ambipolar dual-channel field-effect transistor (FET) with a WSe2 /MoS2 heterostructure formed by separately controlled individual channel layers is demonstrated. The FET shows a switchable ambipolar behavior with independent carrier transport of electrons and holes in the individual layers of MoS2 and WSe2 , respectively. Moreover, the photoresponse is studied at the heterointerface of the WSe2 /MoS2 dual-channel FET.

Journal ArticleDOI
TL;DR: In this paper, the authors show that the quantum emitters can be deliberately induced by nanobubble formation in WSe2 and BN/WSe2 heterostructures.
Abstract: The recent discovery of exciton quantum emitters in transition metal dichalcogenides (TMDCs) has triggered renewed interest of localized excitons in low-dimensional systems. Open questions remain about the microscopic origin previously attributed to dopants and/or defects as well as strain potentials. Here we show that the quantum emitters can be deliberately induced by nanobubble formation in WSe2 and BN/WSe2 heterostructures. Correlations of atomic-force microscope and hyperspectral photoluminescence images reveal that the origin of quantum emitters and trion disorder is extrinsic and related to 10 nm tall nanobubbles and 70 nm tall wrinkles, respectively. We further demonstrate that hot stamping results in the absence of 0D quantum emitters and trion disorder. The demonstrated technique is useful for advances in nanolasers and deterministic formation of cavity-QED systems in monolayer materials.

Journal ArticleDOI
TL;DR: A technique for measuring the layer-resolved charge density, from which to directly determine the valley and orbital polarization within the zero energy Landau level, paving the way for deterministic engineering of fractional quantum Hall states.
Abstract: Strongly interacting two dimensional electron systems (2DESs) host a complex landscape of broken symmetry states. The possible ground states are further expanded by internal degrees of freedom such as spin or valley-isospin. While direct probes of spin in 2DESs were demonstrated two decades ago, the valley quantum number has only been probed indirectly in semiconductor quantum wells, graphene mono- and bilayers, and transition-metal dichalcogenides. Here, we present the first direct experimental measurement of valley polarization in a two dimensional electron system, effected via the direct mapping of the valley quantum number onto the layer polarization in bilayer graphene at high magnetic fields. We find that the layer polarization evolves in discrete steps across 32 electric field-tuned phase transitions between states of different valley, spin, and orbital polarization. Our data can be fit by a model that captures both single particle and interaction induced orbital, valley, and spin anisotropies, providing the most complete model of this complex system to date. Among the newly discovered phases are theoretically unanticipated orbitally polarized states stabilized by skew interlayer hopping. The resulting roadmap to symmetry breaking in bilayer graphene paves the way for deterministic engineering of fractional quantum Hall states, while our layer-resolved technique is readily extendable to other two dimensional materials where layer polarization maps to the valley or spin quantum numbers, providing an essential direct probe that is a prerequisite for manipulating these new quantum degrees of freedom.

Journal ArticleDOI
TL;DR: A graphene nanosensor for affinity-based detection of low-charge, low-molecular-weight molecules, using glucose as a representative is presented, and can potentially be used in noninvasive glucose monitoring.
Abstract: This paper presents a graphene nanosensor for affinity-based detection of low-charge, low-molecular-weight molecules, using glucose as a representative. The sensor is capable of measuring glucose concentration in a practically relevant range of 2 μM to 25 mM, and can potentially be used in noninvasive glucose monitoring.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate fabrication and direct electrical measurement of circular SU-8 polymer-clamped chemical vapor deposition (CVD) graphene drum resonators, which increases device yield and responsivity, while providing a cleaner resonance spectrum from eliminated edge modes.
Abstract: Graphene mechanical resonators are the ultimate two-dimensional nanoelectromechanical systems (NEMS) with applications in sensing and signal processing. While initial devices have shown promising results, an ideal graphene NEMS resonator should be strain engineered, clamped at the edge without trapping gas underneath, and electrically integratable. In this letter, we demonstrate fabrication and direct electrical measurement of circular SU-8 polymer-clamped chemical vapor deposition (CVD) graphene drum resonators. The clamping increases device yield and responsivity, while providing a cleaner resonance spectrum from eliminated edge modes. Furthermore, this resonator is highly strained, indicating its potential in strain engineering for performance enhancement.

Journal ArticleDOI
TL;DR: By coupling to electrons in the quantum Hall regime, the mechanical response of graphene resonators is modulated by changes in the chemical potential as mentioned in this paper. But this is not the case for all resonators.
Abstract: By coupling to electrons in the quantum Hall regime, the mechanical response of graphene resonators is modulated by changes in the chemical potential.

Journal ArticleDOI
TL;DR: In this article, the authors present an experimental study of spin transport in single layer graphene using atomic sheets of hexagonal boron nitride (h-BN) as a tunnel barrier for spin injection.
Abstract: We present an experimental study of spin transport in single layer graphene using atomic sheets of hexagonal boron nitride (h-BN) as a tunnel barrier for spin injection. While h-BN is expected to be favorable for spin injection, previous experimental studies have been unable to achieve spin relaxation times in the nanosecond regime, suggesting potential problems originating from the contacts. Here, we investigate spin relaxation in graphene spin valves with h-BN barriers and observe room temperature spin lifetimes in excess of a nanosecond, which provides experimental confirmation that h-BN is indeed a good barrier material for spin injection into graphene. By carrying out measurements with different thicknesses of h-BN, we show that few layer h-BN is a better choice than monolayer for achieving high non-local spin signals and longer spin relaxation times in graphene.

Journal ArticleDOI
TL;DR: The first 96-well plate platform to screen effects of micro- and nanotopographies on cell growth and proliferation and triple the number of T cells in long-term expansion is demonstrated, with direct clinical applicability in adoptive immunotherapy.
Abstract: We herein demonstrate the first 96-well plate platform to screen effects of micro- and nanotopographies on cell growth and proliferation. Existing high-throughput platforms test a limited number of factors and are not fully compatible with multiple types of testing and assays. This platform is compatible with high-throughput liquid handling, high-resolution imaging, and all multiwell plate-based instrumentation. We use the platform to screen for topographies and drug-topography combinations that have short- and long-term effects on T cell activation and proliferation. We coated nanofabricated “trench-grid” surfaces with anti-CD3 and anti-CD28 antibodies to activate T cells and assayed for interleukin 2 (IL-2) cytokine production. IL-2 secretion was enhanced at 200 nm trench width and >2.3 μm grating pitch; however, the secretion was suppressed at 100 nm width and <0.5 μm pitch. The enhancement on 200 nm grid trench was further amplified with the addition of blebbistatin to reduce contractility. The 200 nm...

Journal ArticleDOI
01 Feb 2016-ACS Nano
TL;DR: A technique for assembling length sorted and chirality monodisperse DNA-wrapped SWCNT segments on hydrophilic lines patterned on a passivated oxidized silicon substrate is developed and represents an important step forward toward the potential implementation of complex SWC NT devices and circuits.
Abstract: The outstanding electronic properties of single wall carbon nanotubes (SWCNTs) have made them prime candidates for future nanoelectronics technologies. One of the main obstacles to the implementation of advanced SWCNT electronics to date is the inability to arrange them in a manner suitable for complex circuits. Directed assembly of SWCNT segments onto lithographically patterned and chemically functionalized substrates is a promising way to organize SWCNTs in topologies that are amenable to integration for advanced applications, but the placement and orientational control required have not yet been demonstrated. We have developed a technique for assembling length sorted and chirality monodisperse DNA-wrapped SWCNT segments on hydrophilic lines patterned on a passivated oxidized silicon substrate. Placement of individual SWCNT segments at predetermined locations was achieved with nanometer accuracy. Three terminal electronic devices, consisting of a single SWCNT segment placed either beneath or on top of m...

Journal ArticleDOI
TL;DR: In this paper, the photo-Nernst effect was used to demonstrate a collection of at least five hot-carriers per absorbed photon in a van der Waals superlattice.
Abstract: In conventional light-harvesting devices, the absorption of a single photon only excites one electron, which sets the standard limit of power-conversion efficiency, such as the Shockley-Queisser limit. In principle, generating and harnessing multiple carriers per absorbed photon can improve efficiency and possibly overcome this limit. We report the observation of multiple hot-carrier collection in graphene/boron-nitride Moire superlattice structures. A record-high zero-bias photoresponsivity of 0.3 A/W (equivalently, an external quantum efficiency exceeding 50%) is achieved using graphene’s photo-Nernst effect, which demonstrates a collection of at least five carriers per absorbed photon. We reveal that this effect arises from the enhanced Nernst coefficient through Lifshtiz transition at low-energy Van Hove singularities, which is an emergent phenomenon due to the formation of Moire minibands. Our observation points to a new means for extremely efficient and flexible optoelectronics based on van der Waals heterostructures.