scispace - formally typeset
Search or ask a question
Institution

Hokkaido University

EducationSapporo, Hokkaidô, Japan
About: Hokkaido University is a education organization based out in Sapporo, Hokkaidô, Japan. It is known for research contribution in the topics: Catalysis & Population. The organization has 53925 authors who have published 115403 publications receiving 2651647 citations. The organization is also known as: Hokudai & Hokkaidō daigaku.
Topics: Catalysis, Population, Gene, Virus, Oxide


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that physiological concentrations of SCFA immediately enhance barrier function of the colonic epithelium through cholesterol-rich microdomain in the plasma membrane.
Abstract: Colonic fermentation products, SCFA, have various effects on colonic functions. Here, we found that physiological concentrations of SCFA immediately promote epithelial barrier function in the large intestine. Solutions of mixed and individual SCFA were applied to the caecal walls mounted on Ussing-type chambers. Transepithelial electrical resistance (TER) increased rapidly and reached a peak 35 % higher than that in the control specimen within 10 min post application of the SCFA mixture (80 acetate, 40 propionate, 20 butyrate (mmol/l)). The Lucifer yellow permeability, a paracellular transport marker, was dose-dependently reduced by the mixed SCFA, acetate and propionate solutions. Inhibition of monocarboxylate transporter-1 did not influence the increase in TER with acetate; however, lowering the pH (from 7.5 to 5.5) clearly enhanced the effect of acetate. Non-metabolizable, bromo and chloro derivatives of SCFA also increased TER. These results suggest that passive diffusion of SCFA is dominant and the metabolism of SCFA is not required for the promotive effect of SCFA on barrier function. We also observed that individual SCFA dose-dependently increased TER in T84 and Caco-2 cells, which indicates that SCFA directly stimulate epithelial cells. Depletion of membrane cholesterol and inhibitors of phosphatidylinositol-3 kinase and Gq protein attenuated the acetate-mediated promotive effect. Finally, we found that the mucosal application of the SCFA mixture dose-dependently suppressed [3H] mannitol transport from the caecal lumen to the mesenteric blood in the anaesthetized rats. We conclude that physiological concentrations of SCFA immediately enhance barrier function of the colonic epithelium through cholesterol-rich microdomain in the plasma membrane.

279 citations

Journal ArticleDOI
TL;DR: This review aims to promote the understandings towards CO2 activation and provide guidelines for the design of new catalysts for efficient CO2 reduction by coupling of solar energy and thermal energy.
Abstract: Enormous efforts have been devoted to the reduction of carbon dioxide (CO2 ) by utilizing various driving forces, such as heat, electricity, and radiation. However, the efficient reduction of CO2 is still challenging because of sluggish kinetics. Recent pioneering studies from several groups, including us, have demonstrated that the coupling of solar energy and thermal energy offers a novel and promising strategy to promote the activity and/or manipulate selectivity in CO2 reduction. Herein, we clarify the definition and principles of coupling solar energy and thermal energy, and comprehensively review the status and prospects of CO2 reduction by coupling solar energy and thermal energy. Catalyst design, reactor configuration, photo-mediated activity/selectivity, and mechanism studies in photo-thermo CO2 reduction will be emphasized. The aim of this Review is to promote understanding towards CO2 activation and provide guidelines for the design of new catalysts for the efficient reduction of CO2 .

279 citations

Journal ArticleDOI
TL;DR: The cisplatin-induced decreases of the plasma acylated-ghrelin level and food intake are mediated by 5-HT2B/2C receptors and suppressed by flavonoids in rikkunshito.

279 citations

Journal ArticleDOI
Jun Komano1, Seiji Maruo1, Koichi Kurozumi1, Takanori Oda1, Kenzo Takada1 
TL;DR: Transfection of the EBER genes into EBV-negative Akata clones restored the capacity for growth in soft agar, tumorigenicity in SCID mice, resistance to apoptotic inducers, and upregulated expression of bcl-2 oncoprotein.
Abstract: Our previous reports indicated that Epstein-Barr virus (EBV) contributes to the malignant phenotype and resistance to apoptosis in Burkitt’s lymphoma (BL) cell line Akata (N Shimizu, A Tanabe-Tochikura, Y Kuroiwa, and K Takada, J Virol 68:6069–6073, 1994; J Komano, M Sugiura, and K Takada, J Virol 72:9150–9156, 1998) Here we report that the EBV-encoded small RNAs (EBERs) are responsible for these phenotypes Transfection of the EBER genes into EBV-negative Akata clones restored the capacity for growth in soft agar, tumorigenicity in SCID mice, resistance to apoptotic inducers, and upregulated expression of bcl-2 oncoprotein that were originally retained in parental EBV-positive Akata cells and lost in EBV-negative subclones This is the first report which provides evidence that virus-encoded RNAs (EBERs) have oncogenic functions in BL cells

278 citations

Journal ArticleDOI
TL;DR: A mechanistic model predicts that impeding proton transfer to the surface is an effective strategy for improving CO2-to-fuels catalyst selectivity and the disparate proton coupling requirements for CO and H2 production establish a mechanistic basis for reaction selectivity in electrocatalytic fuel formation.
Abstract: CO2 reduction in aqueous electrolytes suffers efficiency losses because of the simultaneous reduction of water to H2. We combine in situ surface-enhanced IR absorption spectroscopy (SEIRAS) and electrochemical kinetic studies to probe the mechanistic basis for kinetic bifurcation between H2 and CO production on polycrystalline Au electrodes. Under the conditions of CO2 reduction catalysis, electrogenerated CO species are irreversibly bound to Au in a bridging mode at a surface coverage of ∼0.2 and act as kinetically inert spectators. Electrokinetic data are consistent with a mechanism of CO production involving rate-limiting, single-electron transfer to CO2 with concomitant adsorption to surface active sites followed by rapid one-electron, two-proton transfer and CO liberation from the surface. In contrast, the data suggest an H2 evolution mechanism involving rate-limiting, single-electron transfer coupled with proton transfer from bicarbonate, hydronium, and/or carbonic acid to form adsorbed H species followed by rapid one-electron, one-proton, or H recombination reactions. The disparate proton coupling requirements for CO and H2 production establish a mechanistic basis for reaction selectivity in electrocatalytic fuel formation, and the high population of spectator CO species highlights the complex heterogeneity of electrode surfaces under conditions of fuel-forming electrocatalysis.

278 citations


Authors

Showing all 54156 results

NameH-indexPapersCitations
Shizuo Akira2611308320561
Yi Cui2201015199725
John F. Hartwig14571466472
Yoshihiro Kawaoka13988375087
David Y. Graham138104780886
Takashi Kadowaki13787389729
Kazunari Domen13090877964
Susumu Kitagawa12580969594
Toshikazu Nakamura12173251374
Toshio Hirano12040155721
Li-Jun Wan11363952128
Wenbin Lin11347456786
Xiaoming Li113193272445
Jinhua Ye11265849496
Terence Tao11160694316
Network Information
Related Institutions (5)
Kyoto University
217.2K papers, 6.5M citations

97% related

University of Tokyo
337.5K papers, 10.1M citations

97% related

Nagoya University
128.2K papers, 3.2M citations

97% related

Tohoku University
170.7K papers, 3.9M citations

96% related

Osaka University
185.6K papers, 5.1M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023127
2022427
20214,744
20204,805
20194,363
20184,112