scispace - formally typeset
Search or ask a question
Institution

Hokkaido University

EducationSapporo, Hokkaidô, Japan
About: Hokkaido University is a education organization based out in Sapporo, Hokkaidô, Japan. It is known for research contribution in the topics: Catalysis & Population. The organization has 53925 authors who have published 115403 publications receiving 2651647 citations. The organization is also known as: Hokudai & Hokkaidō daigaku.
Topics: Catalysis, Population, Gene, Virus, Oxide


Papers
More filters
Journal ArticleDOI
TL;DR: The results indicate that DAGLα is essentially targeted to postsynaptic spines in cerebellar and hippocampal neurons, but its fine distribution within and around spines is differently regulated between the two neurons.
Abstract: 2-Arachidonoyl-glycerol (2-AG) is an endocannabinoid that is released from postsynaptic neurons, acts retrogradely on presynaptic cannabinoid receptor CB1, and induces short- and long-term suppression of transmitter release. To understand the mechanisms of the 2-AG-mediated retrograde modulation, we investigated subcellular localization of a major 2-AG biosynthetic enzyme, diacylglycerol lipase-α (DAGLα), by using immunofluorescence and immunoelectron microscopy in the mouse brain. In the cerebellum, DAGLα was predominantly expressed in Purkinje cells. DAGLα was detected on the dendritic surface and occasionally on the somatic surface, with a distal-to-proximal gradient from spiny branchlets toward somata. DAGLα was highly concentrated at the base of spine neck and also accumulated with much lower density on somatodendritic membrane around the spine neck. However, DAGLα was excluded from the main body of spine neck and head. In hippocampal pyramidal cells, DAGLα was also accumulated in spines. In contrast to the distribution in Purkinje cells, DAGLα was distributed in the spine head, neck, or both, whereas somatodendritic membrane was labeled very weakly. These results indicate that DAGLα is essentially targeted to postsynaptic spines in cerebellar and hippocampal neurons, but its fine distribution within and around spines is differently regulated between the two neurons. The preferential spine targeting should enable efficient 2-AG production on excitatory synaptic activity and its swift retrograde modulation onto nearby presynaptic terminals expressing CB1. Furthermore, different fine localization within and around spines suggests that the distance between postsynaptic 2-AG production site and presynaptic CB1 is differentially controlled depending on neuron types.

322 citations

Journal ArticleDOI
01 Jun 2011-Genetics
TL;DR: Results indicate that Gm GIa is the gene responsible for the E2 locus and that a null mutation in GmGIa may contribute to the geographic adaptation of soybean.
Abstract: Flowering is indicative of the transition from vegetative to reproductive phase, a critical event in the life cycle of plants. In soybean (Glycine max), a flowering quantitative trait locus, FT2, corresponding to the maturity locus E2, was detected in recombinant inbred lines (RILs) derived from the varieties "Misuzudaizu" (ft2/ft2; JP28856) and "Moshidou Gong 503" (FT2/FT2; JP27603). A map-based cloning strategy using the progeny of a residual heterozygous line (RHL) from the RIL was employed to isolate the gene responsible for this quantitative trait locus. A GIGANTEA ortholog, GmGIa (Glyma10g36600), was identified as a candidate gene. A common premature stop codon at the 10th exon was present in the Misuzudaizu allele and in other near isogenic lines (NILs) originating from Harosoy (e2/e2; PI548573). Furthermore, a mutant line harboring another premature stop codon showed an earlier flowering phenotype than the original variety, Bay (E2/E2; PI553043). The e2/e2 genotype exhibited elevated expression of GmFT2a, one of the florigen genes that leads to early flowering. The effects of the E2 allele on flowering time were similar among NILs and constant under high (43°N) and middle (36°N) latitudinal regions in Japan. These results indicate that GmGIa is the gene responsible for the E2 locus and that a null mutation in GmGIa may contribute to the geographic adaptation of soybean.

322 citations

Journal ArticleDOI
30 Aug 2012-Nature
TL;DR: A carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean is presented and large superimposed fluctuations in carbonate compensation depth are found during the middle and late Eocene.
Abstract: Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carbon input from volcanic and metamorphic outgassing and its removal by weathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean. The carbonate compensation depth tracks long-term ocean cooling, deepening from 3.0-3.5 kilometres during the early Cenozoic (approximately 55 million years ago) to 4.6 kilometres at present, consistent with an overall Cenozoic increase in weathering. We find large superimposed fluctuations in carbonate compensation depth during the middle and late Eocene. Using Earth system models, we identify changes in weathering and the mode of organic-carbon delivery as two key processes to explain these large-scale Eocene fluctuations of the carbonate compensation depth.

322 citations

Journal ArticleDOI
Akio Kihara1
TL;DR: The molecular mechanism of FA elongation and the responsible enzymes in mammals and yeast, as well as VLCFA-related disorders in human are described.
Abstract: Very long-chain fatty acids (VLCFAs) are fatty acids (FAs) with a chain-length of ≥22 carbons. Mammals have a variety of VLCFAs differing in chain-length and the number of double bonds. Each VLCFA exhibits certain functions, for example in skin barrier formation, liver homeostasis, myelin maintenance, spermatogenesis, retinal function and anti-inflammation. These functions are elicited not by free VLCFAs themselves, but through their influences as components of membrane lipids (sphingolipids and glycerophospholipids) or precursors of inflammation-resolving lipid mediators. VLCFAs are synthesized by endoplasmic reticulum membrane-embedded enzymes through a four-step cycle. The most important enzymes determining the tissue distribution of VLCFAs are FA elongases, which catalyze the first, rate-limiting step of the FA elongation cycle. Mammals have seven elongases (ELOVL1-7), each exhibiting a characteristic substrate specificity. Several inherited disorders are caused by mutations in genes involved in VLCFA synthesis or degradation. In this review, I describe the molecular mechanism of FA elongation and the responsible enzymes in mammals and yeast, as well as VLCFA-related disorders in human.

322 citations

Journal ArticleDOI
TL;DR: Herbert Budka 1, Clayton A. Wiley 2, Paul Kleihues 3, Juan Artigas 4, Arthur K. Asbury 5, Eun-Sook Cho 6, David R. Cornblath 7, Mauro C. Dal Canto 8, Umberto DeGirolami 9, Dennis Dickson 10, Leon G. Epstein 11, Margaret M. Esiri 12, Felice Giangaspero 13, Georg Gosztonyi 14,
Abstract: Herbert Budka 1, Clayton A. Wiley 2, Paul Kleihues 3, Juan Artigas 4, Arthur K. Asbury 5, Eun-Sook Cho 6, David R. Cornblath 7, Mauro C. Dal Canto 8, Umberto DeGirolami 9, Dennis Dickson 10, Leon G. Epstein 11, Margaret M. Esiri 12, Felice Giangaspero 13, Georg Gosztonyi 14, Francoise Gray 15, John W. Griffin 7, Dominique Henin 16, Yuzo lwasaki 17, Robert S. Janssen '8, Richard T. Johnson 7, Peter L. Lantos 19, William D. Lyman 10, Justin C. McArthur 7, Kazuo Nagashima 20, Nancy Peress 21, Carol K. Petito 22, Richard W. Price 23, Roy H. Rhodes Z4, Marc Rosenblum 25, Gerard Said 26, Francesco Scaravilli 27, Leroy R. Sharer 6, Harry V. Vinters 28

322 citations


Authors

Showing all 54156 results

NameH-indexPapersCitations
Shizuo Akira2611308320561
Yi Cui2201015199725
John F. Hartwig14571466472
Yoshihiro Kawaoka13988375087
David Y. Graham138104780886
Takashi Kadowaki13787389729
Kazunari Domen13090877964
Susumu Kitagawa12580969594
Toshikazu Nakamura12173251374
Toshio Hirano12040155721
Li-Jun Wan11363952128
Wenbin Lin11347456786
Xiaoming Li113193272445
Jinhua Ye11265849496
Terence Tao11160694316
Network Information
Related Institutions (5)
Kyoto University
217.2K papers, 6.5M citations

97% related

University of Tokyo
337.5K papers, 10.1M citations

97% related

Nagoya University
128.2K papers, 3.2M citations

97% related

Tohoku University
170.7K papers, 3.9M citations

96% related

Osaka University
185.6K papers, 5.1M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023127
2022427
20214,744
20204,805
20194,363
20184,112