scispace - formally typeset
Search or ask a question
Institution

Kumamoto University

EducationKumamoto, Kumamoto, Japan
About: Kumamoto University is a education organization based out in Kumamoto, Kumamoto, Japan. It is known for research contribution in the topics: Cancer & Population. The organization has 19602 authors who have published 35513 publications receiving 901260 citations. The organization is also known as: Kumamoto Daigaku.
Topics: Cancer, Population, Gene, Cell culture, Receptor


Papers
More filters
Journal Article
TL;DR: Improvements in protein drugs, after tailoring with polymers, are as follows: increased plasma half-life, loss of antigenecity, lymphotropism, and, especially, preferred tumor-targeting efficiency and long-term retention in the tumor tissues.
Abstract: The advantages and disadvantages of macromolecular drugs, particularly on synthetic polymer-protein conjugates, are described in this article. Improvements in protein drugs, after tailoring with polymers, are as follows: increased plasma half-life, loss of antigenecity, lymphotropism, and, especially, preferred tumor-targeting efficiency and long-term retention in the tumor tissues. Hydrophobic character can make a drug also possible for oily formulation. Explained are the rationales of macromolecular drugs to preferential delivery to the tumor and lymphatic tissues based on our finding on pathological/anatomical differences of the blood and lymphatic vasculatures. Enhanced vascular permeability, which facilitates the macromolecular drug-leakage out of the blood vessel, is discussed. A model compound, which is discussed in detail, is smancs--styrene-co-maleic acid conjugated neocarzinostatin (MW 16 K). Some data on polymer-conjugated enzymes as potential therapeutic agents are described as well.

581 citations

Journal ArticleDOI
TL;DR: The effects of cyclodextrins differ from those of detergents which first incorporate themselves into membranes then extract membrane components into supramolecular micelles.
Abstract: Alpha-, beta- and gamma-cyclodextrins are cyclic hexamers, heptamers, and octamers of glucose, respectively, and thus are hydrophilic; nevertheless, they have the ability to solubilize lipids through the formation of molecular inclusion complexes. The volume of lipophilic space involved in the solubilization process increases with the number of glucose units in the cyclodextrin molecule and, consequently, cyclodextrins were found to have different effects on human erythrocytes: (a) in the induction of shape change from discocyte to spherocyte the potency was observed to be alpha greater than gamma, but with beta-cyclodextrin hemolysis occurred before the change was complete; (b) in the increase of fluorescence intensity of 1-anilinonaphthalene-8-sulfonate in cyclodextrin-pretreated membranes, the observed potency was beta much greater than gamma greater than alpha; (c) in the release of potassium and hemoglobin, the potency was beta greater than alpha greater than gamma. The potencies of cyclodextrin for solubilizing various components of erythrocytes were alpha greater than beta much greater than gamma for phospholipids, beta much greater than gamma greater than alpha for cholesterol and beta much greater than gamma greater than alpha for proteins. The solubilization potencies were derived from concentration/final-effect curves. The above processes occurred without entry of solubilizer into the membrane, since (a) beta-[14C]cyclodextrin did not bind to erythrocytes and (b) cyclodextrins did not enter the cholesterol monolayer. A study of the [3H]cholesterol in erythrocytes indicated that beta-cyclodextrin extracted this lipid from membrane into a new compartment located in the aqueous phase which could equilibrate rapidly with additional erythrocytes. Therefore, the effects of cyclodextrins differ from those of detergents which first incorporate themselves into membranes then extract membrane components into supramolecular micelles.

574 citations

Journal ArticleDOI
TL;DR: It is suggested that methylation of a cell type-specific gene promoter is a pivotal event in regulating lineage specification in the developing brain.

571 citations

Journal ArticleDOI
TL;DR: In this paper, a flow pattern map was developed based on the probability of appearance of each type of flow, and compared to the existing flow pattern maps obtained for ∼1-mm diameter channels.

571 citations

Journal ArticleDOI
TL;DR: The natural product FR901464 and its methylated derivative, spliceostatin A are shown to inhibit in vitro splicing and promote pre-mRNA accumulation by binding to SF3b, a subcomplex of the U2 small nuclear ribonucleoprotein in the spliceosome.
Abstract: The removal of intervening sequences from transcripts is catalyzed by the spliceosome, a multicomponent complex that assembles on the newly synthesized pre-mRNA. Pre-mRNA translation in the cytoplasm leads to the generation of aberrant proteins that are potentially harmful. Therefore, tight control to prevent undesired pre-mRNA export from the nucleus and its subsequent translation is an essential requirement for reliable gene expression. Here, we show that the natural product FR901464 (1) and its methylated derivative, spliceostatin A (2), inhibit in vitro splicing and promote pre-mRNA accumulation by binding to SF3b, a subcomplex of the U2 small nuclear ribonucleoprotein in the spliceosome. Importantly, treatment of cells with these compounds resulted in leakage of pre-mRNA to the cytoplasm, where it was translated. Knockdown of SF3b by small interfering RNA induced phenotypes similar to those seen with spliceostatin A treatment. Thus, the inhibition of pre-mRNA splicing during early steps involving SF3b allows unspliced mRNA leakage and translation.

570 citations


Authors

Showing all 19645 results

NameH-indexPapersCitations
Fred H. Gage216967185732
George D. Yancopoulos15849693955
Kenji Kangawa1531117110059
Tasuku Honjo14171288428
Hideo Yagita13794670623
Masashi Yanagisawa13052483631
Kazuwa Nakao128104170812
Kouji Matsushima12459056995
Thomas E. Mallouk12254952593
Toshio Hirano12040155721
Eisuke Nishida11234945918
Hiroaki Shimokawa11194948822
Bernd Bukau11127138446
Kazuo Tsubota105137948991
Toshio Suda10458041069
Network Information
Related Institutions (5)
Hiroshima University
69.2K papers, 1.4M citations

96% related

Hokkaido University
115.4K papers, 2.6M citations

95% related

Osaka University
185.6K papers, 5.1M citations

95% related

Kyushu University
135.1K papers, 3M citations

95% related

Nagoya University
128.2K papers, 3.2M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202315
202297
20211,701
20201,654
20191,511
20181,330