scispace - formally typeset
Search or ask a question
Institution

Kumamoto University

EducationKumamoto, Kumamoto, Japan
About: Kumamoto University is a education organization based out in Kumamoto, Kumamoto, Japan. It is known for research contribution in the topics: Cancer & Population. The organization has 19602 authors who have published 35513 publications receiving 901260 citations. The organization is also known as: Kumamoto Daigaku.
Topics: Cancer, Population, Gene, Cell culture, Receptor


Papers
More filters
Journal ArticleDOI
TL;DR: A unique therapeutic strategy was developed named "oxidation therapy", by delivering cytotoxic ROS directly to the solid tumor, or alternatively inhibiting the antioxidative enzyme system, such as HO-1 in tumor, to achieve the objective of tumor targeting and thus reducing side effects.

460 citations

Journal ArticleDOI
TL;DR: The results demonstrate that the aberrant expression of B7-H1 in urothelial cancer is associated with aggressive tumors, suggesting a regulatory role of tumor-associated B7 H1 in antitumor immunity, and may become a beneficial target for immunotherapy in human uroclinical cancer.
Abstract: Purpose The programmed death-1 (PD-1)/B7-H1 (also called PD-L1) pathway negatively regulates T cell activation and has been suggested to play an important role in regulating antitumor host immunity. To investigate the clinical significance of B7-H1 expression to the tumor grade and postoperative prognosis of patients with urothelial cancer, we analyzed the relationship between B7-H1 expression and various clinicopathological features and postoperative prognosis.

458 citations

Journal ArticleDOI
TL;DR: It is concluded that nonsensory cells in the mature cochlea retain the competence to generate new hair cells after overexpression of Math1 in vivo and that Math1 is necessary and sufficient to direct hair cell differentiation in these mature nonsensary cells.
Abstract: Hair cell loss in the mammalian cochlea is irreversible and results in permanent hearing loss. Math1, the basic helix-loop-helix transcription factor homolog of the Drosophila atonal gene, is a positive regulator of hair cell differentiation during cochlear development. Developing hair cells express Math1, and nonsensory cells do not. We set out to determine the outcome of overexpression of Math1 in nonsensory cells of the cochlea on the phenotype of these cells. We demonstrate that in vivo inoculation of adenovirus with the Math1 gene insert into the endolymph of the mature guinea pig cochlea results in Math1 overexpression in nonsensory cochlear cells, as evident from the presence of Math1 protein in supporting cells of the organ of Corti and in adjacent nonsensory epithelial cells. Math1 overexpression leads to the appearance of immature hair cells in the organ of Corti and new hair cells adjacent to the organ of Corti in the interdental cell, inner sulcus, and Hensen cell regions. Axons are extended from the bundle of auditory nerve toward some of the new hair cells, suggesting that the new cells attract auditory neurons. We conclude that nonsensory cells in the mature cochlea retain the competence to generate new hair cells after overexpression of Math1 in vivo and that Math1 is necessary and sufficient to direct hair cell differentiation in these mature nonsensory cells.

456 citations

Journal ArticleDOI
01 Jan 2006-Diabetes
TL;DR: Results suggest that metformin normalizes hyperglycemia-induced mtROS production by induction of MnSOD and promotion of mitochondrial biogenesis through the activation of AMPK-PGC-1alpha pathway.
Abstract: We previously proposed that the production of hyperglycemia-induced mitochondrial reactive oxygen species (mtROS) is a key event in the development of diabetes complications. The association between the pathogenesis of diabetes and its complications and mitochondrial biogenesis has been recently reported. Because metformin has been reported to exert a possible additional benefit in preventing diabetes complications, we investigated the effect of metformin and 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) on mtROS production and mitochondrial biogenesis in cultured human umbilical vein endothelial cells. Treatment with metformin and AICAR inhibited hyperglycemia-induced intracellular and mtROS production, stimulated AMP-activated protein kinase (AMPK) activity, and increased the expression of peroxisome proliferator-activated response-gamma coactivator-1alpha (PGC-1alpha) and manganese superoxide dismutase (MnSOD) mRNAs. The dominant negative form of AMPKalpha1 diminished the effects of metformin and AICAR on these events, and an overexpression of PGC-1alpha completely blocked the hyperglycemia-induced mtROS production. In addition, metformin and AICAR increased the mRNA expression of nuclear respiratory factor-1 and mitochondrial DNA transcription factor A (mtTFA) and stimulated the mitochondrial proliferation. Dominant negative-AMPK also reduced the effects of metformin and AICAR on these observations. These results suggest that metformin normalizes hyperglycemia-induced mtROS production by induction of MnSOD and promotion of mitochondrial biogenesis through the activation of AMPK-PGC-1alpha pathway.

455 citations

Journal ArticleDOI
TL;DR: This finding indicates the possibility of GO-based perfect two-dimensional proton-conductive materials for applications in fuel cells, sensors, and so on.
Abstract: We measured the proton conductivity of bulk graphite oxide (GO'), a graphene oxide/proton hybrid (GO-H), and a graphene oxide (GO) nanosheet for the first time. GO is a well-known electronic insulator, but for proton conduction we observed the reverse trend, as it exhibited superionic conductivity. The hydrophilic sites present in GO as -O-, -OH, and -COOH functional groups attract the protons, which propagate through hydrogen-bonding networks along the adsorbed water film. The proton conductivities of GO' and GO-H at 100% humidity were ∼10(-4) and ∼10(-5) S cm(-1), respectively, whereas that for GO was amazingly high, nearly 10(-2) S cm(-1). This finding indicates the possibility of GO-based perfect two-dimensional proton-conductive materials for applications in fuel cells, sensors, and so on.

454 citations


Authors

Showing all 19645 results

NameH-indexPapersCitations
Fred H. Gage216967185732
George D. Yancopoulos15849693955
Kenji Kangawa1531117110059
Tasuku Honjo14171288428
Hideo Yagita13794670623
Masashi Yanagisawa13052483631
Kazuwa Nakao128104170812
Kouji Matsushima12459056995
Thomas E. Mallouk12254952593
Toshio Hirano12040155721
Eisuke Nishida11234945918
Hiroaki Shimokawa11194948822
Bernd Bukau11127138446
Kazuo Tsubota105137948991
Toshio Suda10458041069
Network Information
Related Institutions (5)
Hiroshima University
69.2K papers, 1.4M citations

96% related

Hokkaido University
115.4K papers, 2.6M citations

95% related

Osaka University
185.6K papers, 5.1M citations

95% related

Kyushu University
135.1K papers, 3M citations

95% related

Nagoya University
128.2K papers, 3.2M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202315
202297
20211,701
20201,654
20191,511
20181,330