scispace - formally typeset
Search or ask a question
Institution

Southeast University

EducationNanjing, China
About: Southeast University is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Computer science & MIMO. The organization has 66363 authors who have published 79434 publications receiving 1170576 citations. The organization is also known as: SEU.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a random generation method was introduced to efficiently model the 2D microstructures that retained the essential features of the experimental materials, based on the reproduced 2D images, a resistor network analogy method was then introduced to numerically predict the effective thermal conductivity of this material.

176 citations

Journal ArticleDOI
TL;DR: An overview of the status and challenges in the LC passive wireless sensor toward a wireless sensing platform is provided and recent efforts to increase the interrogation distance and to extend the measurement of single parameter to multiple parameters are finally outlined.
Abstract: Inductor–capacitor ( $LC$ ) passive wireless sensors use a transformer with loose coupling between an external readout coil and an inductor that receives power through this inductive coupling. Changes in the sensor are wirelessly and remotely detected by the readout coil, which makes them highly useful in applications that require the sensor to be powered remotely and to occupy a small volume, such as harsh and sealed environments, where physical access to the sensor is difficult. Although the sensor to accomplish this function dates from the 1960’s, its rapid extension over the past decades has benefited from microelectromechanical systems. This paper provides an overview of the status and challenges in the $LC$ passive wireless sensor toward a wireless sensing platform. The basic sensing principles are first categorized into detecting changes of the sensor in response to the capacitance, resistance, inductance, or coupling distance due to the parameter of interest through monitoring the impedance magnitude and phase spectrum. The present state of the art in sensor applications for pressure, strain, temperature, humidity, biochemical, gas, and so on is then reviewed and compared. For emerging applications from many Internet of Things scenarios, geometrical constraints, such as small and non-invasive coils, reduce the magnetic coupling between the sensor and the readout coil, resulting in a limited interrogation distance. Furthermore, an increasing number of applications also require the simultaneous measurement of multiple parameters. Recent efforts to increase the interrogation distance and to extend the measurement of single parameter to multiple parameters are finally outlined. [2016-0093]

176 citations

Journal ArticleDOI
TL;DR: This paper develops the consistency measures of HFPRs, establishes the consistency thresholds to measure whether or not an HFPR is of acceptable consistency, and uses the hesitant aggregation operators to aggregate preferences inHFPRs to obtain the ranking results.
Abstract: In this paper, we explore the ranking methods with hesitant fuzzy preference relations (HFPRs) in the group decision making environments. As basic elements of hesitant fuzzy sets, hesitant fuzzy elements (HFEs) usually have different numbers of possible values. In order to compute or compare HFEs, we have two principles to normalize them, i.e., the α-normalization and the β-normalization. Based on the α-normalization, we develop a new hesitant goal programming model to derive priorities from HFPRs. On the basis of the β-normalization, we develop the consistency measures of HFPRs, establish the consistency thresholds to measure whether or not an HFPR is of acceptable consistency, and then use the hesitant aggregation operators to aggregate preferences in HFPRs to obtain the ranking results.

176 citations

Journal ArticleDOI
TL;DR: A new spatial spectrum-sharing strategy for massive multiple-input multiple-output (MIMO) cognitive radio (CR) systems and a full-space coverage concept by employing two CBSs at the adjacent sides of each cell, which diminishes the sheltering effect from the primary radio.
Abstract: In this paper, we introduce a new spatial spectrum-sharing strategy for massive multiple-input multiple-output (MIMO) cognitive radio (CR) systems. Different from the conventional MIMO CR system, CR terminals can be discriminated by their angular information with the help of high spatial resolution of massive antennas at CR base station (CBS). Moreover, the discrete Fourier transform can be applied to efficiently obtain such angular information thanks to the massive antennas, again. We then formulate a 2-D spatial basis expansion model to represent the uplink/downlink channels of CRs with reduced parameter dimensions, which immediately alleviates the general headaches of massive MIMO systems, such as uplink pilot contamination and downlink training overhead. Moreover, we present a full-space coverage concept by employing two CBSs at the adjacent sides of each cell, which diminishes the sheltering effect from the primary radio. We also design two greedy CR scheduling algorithms for the dual CBSs to improve the spectral efficiency and enhance the scheduling probability of CRs. Since the proposed strategy exploits angular information and since the angle reciprocity holds for two frequency carriers with moderate distance, the proposed strategy is applied for both time division duplex and frequency division duplex systems.

176 citations

Journal ArticleDOI
TL;DR: In this paper, an open-structure eigenvalue problem of substrate integrated waveguide (SIW) cavity structures is investigated in detail by using a finite-difference frequency-domain method, and the quality (Q) factor of such SIW cavities is given.
Abstract: An open-structure eigenvalue problem of substrate integrated waveguide (SIW) cavity structures is investigated in detail by using a finite-difference frequency-domain method, and the quality (Q) factor of such SIW cavities is given. Based on the concept of a defected ground structure, a new class of SIW cavity bandpass filters are designed, fabricated, and measured around 5.8 GHz. With their fabrication on standard printed circuit boards, such filters present the advantages of high-Q factor, high power capacity, and small size. Simulated and measured results are presented and discussed to show promising performances of the proposed filters.

176 citations


Authors

Showing all 66906 results

NameH-indexPapersCitations
H. S. Chen1792401178529
Yang Yang1712644153049
Gang Chen1673372149819
Xiang Zhang1541733117576
Rui Zhang1512625107917
Yi Yang143245692268
Guanrong Chen141165292218
Wei Huang139241793522
Jun Chen136185677368
Jian Li133286387131
Xiaoou Tang13255394555
Zhen Li127171271351
Tao Zhang123277283866
Bo Wang119290584863
Jinde Cao117143057881
Network Information
Related Institutions (5)
Zhejiang University
183.2K papers, 3.4M citations

96% related

Shanghai Jiao Tong University
184.6K papers, 3.4M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

94% related

Nanjing University
105.5K papers, 2.2M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023228
20221,302
20219,150
20208,667
20197,684
20186,464