scispace - formally typeset
Search or ask a question
Institution

Southeast University

EducationNanjing, China
About: Southeast University is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Computer science & MIMO. The organization has 66363 authors who have published 79434 publications receiving 1170576 citations. The organization is also known as: SEU.


Papers
More filters
Journal ArticleDOI
TL;DR: Although their exact roles and mechanisms of gene regulation remain to be clarified, circRNAs have potential applications as disease biomarkers and novel therapeutic targets.

551 citations

Journal ArticleDOI
Hui Feng Ma1, Xiaopeng Shen1, Qiang Cheng1, Wei Xiang Jiang1, Tie Jun Cui1 
TL;DR: In this article, a smooth bridge between the conventional coplanar waveguide with 50 Ω impedance and plasmonic waveguide (e.g., an ultrathin corrugated metallic strip) has been proposed in the microwave frequency, which converts the guided waves to spoof SPPs with high efficiency in broadband.
Abstract: The conversion from spatial propagating waves to surface plasmon polaritons (SPPs) has been well studied, and shown to be very efficient by using gradient-index metasurfaces. However, feeding energies into and extracting signals from functional plasmonic devices or circuits through transmission lines require the efficient conversion between SPPs and guided waves, which has not been reported, to the best of our knowledge. In this paper, a smooth bridge between the conventional coplanar waveguide (CPW) with 50 Ω impedance and plasmonic waveguide (e.g., an ultrathin corrugated metallic strip) has been proposed in the microwave frequency, which converts the guided waves to spoof SPPs with high efficiency in broadband. A matching transition has been proposed and designed, which is constructed by gradient corrugations and flaring ground, to match both the momentum and impedance of CPW and the plasmonic waveguide. Simulated and measured results on the transmission coefficients and near-filed distributions show excellent transmission efficiency from CPW to a plasmonic waveguide to CPW in a wide frequency band. The high-efficiency and broadband conversion between SPPs and guided waves opens up a new avenue for advanced conventional plasmonic integrated functional devices and circuits.

551 citations

Proceedings ArticleDOI
14 Oct 2007
TL;DR: Simulation results show that energy-LEACH and multihop-leACH protocols have better performance than LEACH protocols.
Abstract: This paper studies LEACH protocol, and puts forward energy-LEACH and multihop-LEACH protocols. Energy-LEACH protocol improves the choice method of the cluster head, makes some nodes which have more residual energy as cluster heads in next round. Multihop-LEACH protocol improves communication mode from single hop to multi-hop between cluster head and sink. Simulation results show that energy-LEACH and multihop-LEACH protocols have better performance than LEACH protocols.

551 citations

Journal ArticleDOI
TL;DR: A series of milestones and steady progress in the past decade have enabled our understanding of multiferroic physics substantially comprehensive and profound, which is further pushing forward the research frontier of this exciting area.
Abstract: Multiferroics are those materials with more than one ferroic order, and magnetoelectricity refers to the mutual coupling between magnetism (spins and/or magnetic field) and electricity (electric dipoles and/or electric field). In spite of the long research history in the whole twentieth century, the discipline of multiferroicity has never been so highly active as that in the first decade of the twenty-first century, and it has become one of the hottest disciplines of condensed matter physics and materials science. A series of milestones and steady progress in the past decade have enabled our understanding of multiferroic physics substantially comprehensive and profound, which is further pushing forward the research frontier of this exciting area. The availability of more multiferroic materials and improved magnetoelectric performance are approaching to make the applications within reach. While seminal review articles covering the major progress before 2010 are available, an updated review addressing the n...

549 citations

Journal ArticleDOI
TL;DR: Two-dimensional transition metal dichalcogenides (TMDCs) have been considered as promising candidates for next generation nanoelectronics and their corresponding applications in electronic and optoelectronic devices.
Abstract: Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been considered as promising candidates for next generation nanoelectronics. Because of their atomically-thin structure and high surface to volume ratio, the interfaces involved in TMDC-based devices play a predominant role in determining the device performance, such as charge injection/collection at the metal/TMDC interface, and charge carrier trapping at the dielectric/TMDC interface. On the other hand, the crystalline structures of TMDCs are enriched by a variety of intrinsic defects, including vacancies, adatoms, grain boundaries, and substitutional impurities. Customized design and engineering of the interfaces and defects provides an effective way to modulate the properties of TMDCs and finally enhance the device performance. Herein, we summarize and highlight recent advances and state-of-the-art investigations on the interface and defect engineering of TMDCs and their corresponding applications in electronic and optoelectronic devices. Various interface engineering approaches for TMDCs are overviewed, including surface charge transfer doping, TMDC/metal contact engineering, and TMDC/dielectric interface engineering. Subsequently, different types of structural defects in TMDCs are introduced. Defect engineering strategies utilized to modulate the optical and electronic properties of TMDCs, as well as the developed high-performance and functional devices are summarized. Finally, we highlight the challenges and opportunities for interface and defect engineering in TMDC materials for electronics and optoelectronics.

541 citations


Authors

Showing all 66906 results

NameH-indexPapersCitations
H. S. Chen1792401178529
Yang Yang1712644153049
Gang Chen1673372149819
Xiang Zhang1541733117576
Rui Zhang1512625107917
Yi Yang143245692268
Guanrong Chen141165292218
Wei Huang139241793522
Jun Chen136185677368
Jian Li133286387131
Xiaoou Tang13255394555
Zhen Li127171271351
Tao Zhang123277283866
Bo Wang119290584863
Jinde Cao117143057881
Network Information
Related Institutions (5)
Zhejiang University
183.2K papers, 3.4M citations

96% related

Shanghai Jiao Tong University
184.6K papers, 3.4M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

94% related

Nanjing University
105.5K papers, 2.2M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023228
20221,302
20219,150
20208,667
20197,684
20186,464