scispace - formally typeset
Search or ask a question
Institution

Spanish National Research Council

GovernmentMadrid, Spain
About: Spanish National Research Council is a government organization based out in Madrid, Spain. It is known for research contribution in the topics: Population & Galaxy. The organization has 79563 authors who have published 220470 publications receiving 7698991 citations. The organization is also known as: CSIC & Consejo Superior de Investigaciones Científicas.
Topics: Population, Galaxy, Catalysis, Stars, Gene


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that catechols can be found either as simple molecular systems, forming part of supramolacular structures, coordinated to different metal ions or as macromolecules mostly arising from polymerization mechanisms through covalent bonds.
Abstract: Catechols are found in nature taking part in a remarkably broad scope of biochemical processes and functions. Though not exclusively, such versatility may be traced back to several properties uniquely found together in the o-dihydroxyaryl chemical function; namely, its ability to establish reversible equilibria at moderate redox potentials and pHs and to irreversibly cross-link through complex oxidation mechanisms; its excellent chelating properties, greatly exemplified by, but by no means exclusive, to the binding of Fe(3+); and the diverse modes of interaction of the vicinal hydroxyl groups with all kinds of surfaces of remarkably different chemical and physical nature. Thanks to this diversity, catechols can be found either as simple molecular systems, forming part of supramolacular structures, coordinated to different metal ions or as macromolecules mostly arising from polymerization mechanisms through covalent bonds. Such versatility has allowed catechols to participate in several natural processes and functions that range from the adhesive properties of marine organisms to the storage of some transition metal ions. As a result of such an astonishing range of functionalities, catechol-based systems have in recent years been subject to intense research, aimed at mimicking these natural systems in order to develop new functional materials and coatings. A comprehensive review of these studies is discussed in this paper.

613 citations

Journal ArticleDOI
TL;DR: Positive and negative effects of food processing, storage, cooking on carotenoid content and carOTenoid bioavailability are summarized and the possibility to improve carotENoids bioavailability in accordance with changes and variations of technology procedures is evidenced.
Abstract: Carotenoids are one of the major food micronutrients in human diets and the overall objective of this review is to re-examine the role of carotenoids in human nutrition. We have emphasized the attention on the following carotenoids present in food and human tissues: beta-carotene, beta-cryptoxanthin, alpha-carotene, lycopene, lutein and zeaxanthin; we have reported the major food sources and dietary intake of these compounds. We have tried to summarize positive and negative effects of food processing, storage, cooking on carotenoid content and carotenoid bioavailability. In particular, we have evidenced the possibility to improve carotenoids bioavailability in accordance with changes and variations of technology procedures.

612 citations

Journal ArticleDOI
TL;DR: This study illustrates the advantages of dense SNP mapping analysis to inform subsequent functional investigations and refined the peak of association to a single gene for 19 loci, identified secondary independent effects at 6 loci and identified association to low-frequency variants at 4 loci.
Abstract: Using the Immunochip custom SNP array, which was designed for dense genotyping of 186 loci identified through genome-wide association studies (GWAS), we analyzed 11,475 individuals with rheumatoid arthritis (cases) of European ancestry and 15,870 controls for 129,464 markers. We combined these data in a meta-analysis with GWAS data from additional independent cases (n = 2,363) and controls (n = 17,872). We identified 14 new susceptibility loci, 9 of which were associated with rheumatoid arthritis overall and five of which were specifically associated with disease that was positive for anticitrullinated peptide antibodies, bringing the number of confirmed rheumatoid arthritis risk loci in individuals of European ancestry to 46. We refined the peak of association to a single gene for 19 loci, identified secondary independent effects at 6 loci and identified association to low-frequency variants at 4 loci. Bioinformatic analyses generated strong hypotheses for the causal SNP at seven loci. This study illustrates the advantages of dense SNP mapping analysis to inform subsequent functional investigations.

612 citations

Journal ArticleDOI
TL;DR: New methods to identify and quantify individual pigments in the presence of overlapping absorption features would provide a major advance in understanding their biological functions, quantifying net carbon exchange, and identifying plant stresses.

612 citations

Journal ArticleDOI
01 Aug 1994-Planta
TL;DR: In this article, it was shown that increased levels and decompartmentation of catalytic metals occurring during water stress are responsible for the oxidative damage observed in vivo in leaves, i.e., increased levels of ascorbate, H2O2, and catalytic metal ions in leaves.
Abstract: Pea (Pisum sativum L. cv. Frilene) plants subjected to drought (leaf water potential of ≈-1.3 MPa) showed major reductions in photosynthesis (78‰), transpiration (83‰), and glycolate oxidase (EC 1.1.3.1) activity (44‰), and minor reductions (≈18‰) in the contents of chlorophyll a, carotenoids, and soluble protein. Water stress also led to pronounced decreases (72–85‰) in the activities of catalase (EC 1.11.1.6), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2), but resulted in the increase (32–42‰) of non-specific peroxidase (EC 1.11.1.7) and superoxide dismutase (EC 1.15.1.1). Ascorbate peroxidase (EC 1.11.1.11) and monodehydroascorbate reductase (EC 1.6.5.4) activities decreased only by 15‰ and the two enzymes acted in a cyclic manner to remove H2O2, which did not accumulate in stressed leaves. Drought had no effect on the levels of ascorbate and oxidized glutathione in leaves, but caused a 25‰ decrease in the content of reduced glutathione and a 67‰ increase in that of vitamin E. In leaves, average concentrations of catalytic Fe, i.e. Fe capable of catalyzing free-radical generation by redox cycling, were estimated as 0.7 to 7 μM (well-watered plants, depending on age) and 16 μM (water-stressed plants); those of catalytic Cu were ≈4.5 μM and 18 μM, respectively. Oxidation of lipids and proteins from leaves was enhanced two- to threefold under stress conditions and both processes were highly correlated. Fenton systems composed of the purported concentrations of ascorbate, H2O2, and catalytic metal ions in leaves produced hydroxyl radicals, peroxidized membrane lipids, and oxidized leaf proteins. It is proposed that augmented levels and decompartmentation of catalytic metals occurring during water stress are responsible for the oxidative damage observed in vivo.

611 citations


Authors

Showing all 79686 results

NameH-indexPapersCitations
Guido Kroemer2361404246571
George Efstathiou187637156228
Peidong Yang183562144351
H. S. Chen1792401178529
David R. Williams1782034138789
Andrea Bocci1722402176461
Adrian L. Harris1701084120365
Gang Chen1673372149819
Gregory J. Hannon165421140456
Alvaro Pascual-Leone16596998251
Jorge E. Cortes1632784124154
Dongyuan Zhao160872106451
John B. Goodenough1511064113741
David D'Enterria1501592116210
A. Gomes1501862113951
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

95% related

University of Barcelona
108.5K papers, 3.7M citations

93% related

Max Planck Society
406.2K papers, 19.5M citations

93% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

93% related

University of Padua
114.8K papers, 3.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202371
2022463
202111,933
202012,584
201911,596