scispace - formally typeset
Search or ask a question

Showing papers by "Spanish National Research Council published in 2012"


Journal ArticleDOI
Kaoru Hagiwara, Ken Ichi Hikasa1, Koji Nakamura, Masaharu Tanabashi1, M. Aguilar-Benitez, Claude Amsler2, R. M. Barnett3, P. R. Burchat4, C. D. Carone5, C. Caso6, G. Conforto7, Olav Dahl3, Michael Doser8, Semen Eidelman9, Jonathan L. Feng10, L. K. Gibbons11, M. C. Goodman12, Christoph Grab13, D. E. Groom3, Atul Gurtu8, Atul Gurtu14, K. G. Hayes15, J.J. Hernández-Rey16, K. Honscheid17, Christopher Kolda18, Michelangelo L. Mangano8, D. M. Manley19, Aneesh V. Manohar20, John March-Russell8, Alberto Masoni, Ramon Miquel3, Klaus Mönig, Hitoshi Murayama3, Hitoshi Murayama21, S. Sánchez Navas13, Keith A. Olive22, Luc Pape8, C. Patrignani6, A. Piepke23, Matts Roos24, John Terning25, Nils A. Tornqvist24, T. G. Trippe3, Petr Vogel26, C. G. Wohl3, Ron L. Workman27, W-M. Yao3, B. Armstrong3, P. S. Gee3, K. S. Lugovsky, S. B. Lugovsky, V. S. Lugovsky, Marina Artuso28, D. Asner29, K. S. Babu30, E. L. Barberio8, Marco Battaglia8, H. Bichsel31, O. Biebel32, P. Bloch8, Robert N. Cahn3, Ariella Cattai8, R.S. Chivukula33, R. Cousins34, G. A. Cowan35, Thibault Damour36, K. Desler, R. J. Donahue3, D. A. Edwards, Victor Daniel Elvira37, Jens Erler38, V. V. Ezhela, A Fassò8, W. Fetscher13, Brian D. Fields39, B. Foster40, Daniel Froidevaux8, Masataka Fukugita41, Thomas K. Gaisser42, L. A. Garren37, H J Gerber13, Frederick J. Gilman43, Howard E. Haber44, C. A. Hagmann29, J.L. Hewett4, Ian Hinchliffe3, Craig J. Hogan31, G. Höhler45, P. Igo-Kemenes46, John David Jackson3, Kurtis F Johnson47, D. Karlen48, B. Kayser37, S. R. Klein3, Konrad Kleinknecht49, I.G. Knowles50, P. Kreitz4, Yu V. Kuyanov, R. Landua8, Paul Langacker38, L. S. Littenberg51, Alan D. Martin52, Tatsuya Nakada8, Tatsuya Nakada53, Meenakshi Narain33, Paolo Nason, John A. Peacock54, H. R. Quinn55, Stuart Raby17, Georg G. Raffelt32, E. A. Razuvaev, B. Renk49, L. Rolandi8, Michael T Ronan3, L.J. Rosenberg54, C.T. Sachrajda55, A. I. Sanda56, Subir Sarkar57, Michael Schmitt58, O. Schneider53, Douglas Scott59, W. G. Seligman60, M. H. Shaevitz60, Torbjörn Sjöstrand61, George F. Smoot3, Stefan M Spanier4, H. Spieler3, N. J. C. Spooner62, Mark Srednicki63, Achim Stahl, Todor Stanev42, M. Suzuki3, N. P. Tkachenko, German Valencia64, K. van Bibber29, Manuella Vincter65, D. R. Ward66, Bryan R. Webber66, M R Whalley52, Lincoln Wolfenstein43, J. Womersley37, C. L. Woody51, Oleg Zenin 
Tohoku University1, University of Zurich2, Lawrence Berkeley National Laboratory3, Stanford University4, College of William & Mary5, University of Genoa6, University of Urbino7, CERN8, Budker Institute of Nuclear Physics9, University of California, Irvine10, Cornell University11, Argonne National Laboratory12, ETH Zurich13, Tata Institute of Fundamental Research14, Hillsdale College15, Spanish National Research Council16, Ohio State University17, University of Notre Dame18, Kent State University19, University of California, San Diego20, University of California, Berkeley21, University of Minnesota22, University of Alabama23, University of Helsinki24, Los Alamos National Laboratory25, California Institute of Technology26, George Washington University27, Syracuse University28, Lawrence Livermore National Laboratory29, Oklahoma State University–Stillwater30, University of Washington31, Max Planck Society32, Boston University33, University of California, Los Angeles34, Royal Holloway, University of London35, Université Paris-Saclay36, Fermilab37, University of Pennsylvania38, University of Illinois at Urbana–Champaign39, University of Bristol40, University of Tokyo41, University of Delaware42, Carnegie Mellon University43, University of California, Santa Cruz44, Karlsruhe Institute of Technology45, Heidelberg University46, Florida State University47, Carleton University48, University of Mainz49, University of Edinburgh50, Brookhaven National Laboratory51, Durham University52, University of Lausanne53, Massachusetts Institute of Technology54, University of Southampton55, Nagoya University56, University of Oxford57, Northwestern University58, University of British Columbia59, Columbia University60, Lund University61, University of Sheffield62, University of California, Santa Barbara63, Iowa State University64, University of Alberta65, University of Cambridge66
TL;DR: The Particle Data Group's biennial review as mentioned in this paper summarizes much of particle physics, using data from previous editions, plus 2658 new measurements from 644 papers, and lists, evaluates, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons.
Abstract: This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2658 new measurements from 644 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 112 reviews are many that are new or heavily revised including those on Heavy-Quark and Soft-Collinear Effective Theory, Neutrino Cross Section Measurements, Monte Carlo Event Generators, Lattice QCD, Heavy Quarkonium Spectroscopy, Top Quark, Dark Matter, V-cb & V-ub, Quantum Chromodynamics, High-Energy Collider Parameters, Astrophysical Constants, Cosmological Parameters, and Dark Matter. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.lbl.gov.

4,465 citations


Journal ArticleDOI
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

4,316 citations


Journal ArticleDOI
TL;DR: Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation.
Abstract: Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.

4,116 citations


Journal ArticleDOI
Shusei Sato, Satoshi Tabata, Hideki Hirakawa, Erika Asamizu  +320 moreInstitutions (51)
31 May 2012-Nature
TL;DR: A high-quality genome sequence of domesticated tomato is presented, a draft sequence of its closest wild relative, Solanum pimpinellifolium, is compared, and the two tomato genomes are compared to each other and to the potato genome.
Abstract: Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit development. Solanum is one of the largest angiosperm genera1 and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, Solanum pimpinellifolium2, and compare them to each other and to the potato genome (Solanum tuberosum). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with rosids, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling fruit characteristics, such as colour and fleshiness.

2,687 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a survey of the use of Wannier functions in the context of electronic-structure theory, including their applications in analyzing the nature of chemical bonding, or as a local probe of phenomena related to electric polarization and orbital magnetization.
Abstract: The electronic ground state of a periodic system is usually described in terms of extended Bloch orbitals, but an alternative representation in terms of localized "Wannier functions" was introduced by Gregory Wannier in 1937. The connection between the Bloch and Wannier representations is realized by families of transformations in a continuous space of unitary matrices, carrying a large degree of arbitrariness. Since 1997, methods have been developed that allow one to iteratively transform the extended Bloch orbitals of a first-principles calculation into a unique set of maximally localized Wannier functions, accomplishing the solid-state equivalent of constructing localized molecular orbitals, or "Boys orbitals" as previously known from the chemistry literature. These developments are reviewed here, and a survey of the applications of these methods is presented. This latter includes a description of their use in analyzing the nature of chemical bonding, or as a local probe of phenomena related to electric polarization and orbital magnetization. Wannier interpolation schemes are also reviewed, by which quantities computed on a coarse reciprocal-space mesh can be used to interpolate onto much finer meshes at low cost, and applications in which Wannier functions are used as efficient basis functions are discussed. Finally the construction and use of Wannier functions outside the context of electronic-structure theory is presented, for cases that include phonon excitations, photonic crystals, and cold-atom optical lattices.

2,217 citations


Journal ArticleDOI
TL;DR: The study of antibiotic resistance has been historically concentrated on the analysis of bacterial pathogens and on the consequences of acquiring resistance for human health, but the studies on antibiotic resistance should not be confined to clinical-associated ecosystems.
Abstract: Work in our laboratory is supported by grants BIO2008-00090 from the Spanish Ministry of Science and Innovation and KBBE-227258 (BIOHYPO), HEALTH-F3-2011-282004 (EVOTAR), and HEALTH-F3-2010-241476 (PAR) from European Union.

2,103 citations


Journal ArticleDOI
TL;DR: UV-Visible ار راد ن .د TiO2 ( تیفرظ راون مان هب نورتکلا یاراد لماش VB و ) رگید اب لاقتنا VB (CO2) .
Abstract: UV-Visible ار راد ن .د TiO2 ( تیفرظ راون مان هب نورتکلا یاراد یژرنا زارت لماش VB و ) رگید زارت ی یژرنا اب ( ییاناسر راون مان هب نورتکلا زا یلاخ و رتلااب VB یم ) .دشاب ت ود نیا نیب یژرنا توافت یژرنا فاکش زار ، پگ دناب هدیمان یم .دوش هک ینامز زا نورتکلا لاقتنا VB هب VB یم ماجنا دریگ ، TiO2 اب ودح یژرنا بذج د ev 2 / 3 ، نورتکلا تفج کی دیلوت یم هرفح .دیامن و نورتکلا هرفح ی نا اب هدش دیلوت یم کرتشم حطس هب لاقت ثعاب دناوت شنکاو ماجنا اه یی ددرگ . TiO2 دربراک ،دراد یدایز یاه هلمج زا یم ناوت اوه یگدولآ هیفصت یارب (CO2) و بآ و ... نآ زا هدافتسا درک .

2,055 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a measurement of the cosmic distance scale from detections of the baryon acoustic oscillations in the clustering of galaxies from the Baryon Oscillation Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey III (SDSS-III).
Abstract: We present a one per cent measurement of the cosmic distance scale from the detections of the baryon acoustic oscillations in the clustering of galaxies from the Baryon Oscillation Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey III (SDSS-III). Our results come from the Data Release 11 (DR11) sample, containing nearly one million galaxies and covering approximately $8\,500$ square degrees and the redshift range $0.2

2,040 citations


Journal ArticleDOI
TL;DR: A comprehensive review of the Chemical-Looping Combustion (CLC) and ChemicalLooping Reforming (CLR) processes reporting the main advances in these technologies up to 2010 is presented in this article.

1,926 citations


Journal ArticleDOI
05 Jul 2012-Nature
TL;DR: A successful alliance between nanoelectronics and nano-optics enables the development of active subwavelength-scale optics and a plethora of nano-optoelectronic devices and functionalities, such as tunable metamaterials, nanoscale optical processing, and strongly enhanced light–matter interactions for quantum devices and biosensing applications.
Abstract: The ability to manipulate optical fields and the energy flow of light is central to modern information and communication technologies, as well as quantum information processing schemes However, because photons do not possess charge, a way of controlling them efficiently by electrical means has so far proved elusive A promising way to achieve electric control of light could be through plasmon polaritons—coupled excitations of photons and charge carriers—in graphene In this two-dimensional sheet of carbon atoms, it is expected that plasmon polaritons and their associated optical fields can readily be tuned electrically by varying the graphene carrier density Although evidence of optical graphene plasmon resonances has recently been obtained spectroscopically, no experiments so far have directly resolved propagating plasmons in real space Here we launch and detect propagating optical plasmons in tapered graphene nanostructures using near-field scattering microscopy with infrared excitation light We provide real-space images of plasmon fields, and find that the extracted plasmon wavelength is very short—more than 40 times smaller than the wavelength of illumination We exploit this strong optical field confinement to turn a graphene nanostructure into a tunable resonant plasmonic cavity with extremely small mode volume The cavity resonance is controlled in situ by gating the graphene, and in particular, complete switching on and off of the plasmon modes is demonstrated, thus paving the way towards graphene-based optical transistors This successful alliance between nanoelectronics and nano-optics enables the development of active subwavelength-scale optics and a plethora of nano-optoelectronic devices and functionalities, such as tunable metamaterials, nanoscale optical processing, and strongly enhanced light–matter interactions for quantum devices and biosensing applications

1,845 citations


Journal ArticleDOI
TL;DR: The potential of exploring inter-taxa correlations to gain a more integrated understanding of microbial community structure and the ecological rules guiding community assembly is demonstrated.
Abstract: Exploring large environmental datasets generated by high-throughput DNA sequencing technologies requires new analytical approaches to move beyond the basic inventory descriptions of the composition and diversity of natural microbial communities. In order to investigate potential interactions between microbial taxa, network analysis of significant taxon co-occurrence patterns may help to decipher the structure of complex microbial communities across spatial or temporal gradients. Here, we calculated associations between microbial taxa and applied network analysis approaches to a 16S rRNA gene barcoded pyrosequencing dataset containing >160 000 bacterial and archaeal sequences from 151 soil samples from a broad range of ecosystem types. We described the topology of the resulting network and defined operational taxonomic unit categories based on abundance and occupancy (that is, habitat generalists and habitat specialists). Co-occurrence patterns were readily revealed, including general non-random association, common life history strategies at broad taxonomic levels and unexpected relationships between community members. Overall, we demonstrated the potential of exploring inter-taxa correlations to gain a more integrated understanding of microbial community structure and the ecological rules guiding community assembly.

Journal ArticleDOI
TL;DR: In this paper, the authors presented the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS) for the Sloan Digital Sky Survey III (SDSS-III) dataset.
Abstract: The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z ~ 0.52), 102,100 new quasar spectra (median z ~ 2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T eff -0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SEGUE-2. The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the APOGEE along with another year of data from BOSS, followed by the final SDSS-III data release in 2014 December.

Journal ArticleDOI
19 Oct 2012-Science
TL;DR: How previously isolated lines of work can be connected are reviewed, it is concluded that many critical transitions (such as escape from the poverty trap) can have positive outcomes, and how the new approaches to sensing fragility can help to detect both risks and opportunities for desired change.
Abstract: Tipping points in complex systems may imply risks of unwanted collapse, but also opportunities for positive change. Our capacity to navigate such risks and opportunities can be boosted by combining emerging insights from two unconnected fields of research. One line of work is revealing fundamental architectural features that may cause ecological networks, financial markets, and other complex systems to have tipping points. Another field of research is uncovering generic empirical indicators of the proximity to such critical thresholds. Although sudden shifts in complex systems will inevitably continue to surprise us, work at the crossroads of these emerging fields offers new approaches for anticipating critical transitions.

Journal ArticleDOI
TL;DR: In this paper, the authors present a systematic review of research on academic scientists' involvement in collaborative research, contract research, consulting and informal relationships for university-industry knowledge transfer, which they refer as academic engagement.
Abstract: A considerable body of work highlights the relevance of collaborative research, contract research, consulting and informal relationships for university-industry knowledge transfer. We present a systematic review of research on academic scientists’ involvement in these activities to which we refer as ‘academic engagement’. Apart from extracting findings that are generalisable across studies, we ask how academic engagement differs from commercialization, defined as intellectual property creation and academic entrepreneurship. We identify the individual, organizational and institutional antecedents and consequences of academic engagement, and then compare these findings with the antecedents and consequences of commercialization. Apart from being more widely practiced, academic engagement is distinct from commercialization in that it is closely aligned with traditional academic research activities, and pursued by academics to access resources supporting their research agendas. We conclude by identifying future research needs, opportunities for methodological improvement and policy interventions. (Published version available via open access)

Journal ArticleDOI
07 Jun 2012-Nature
TL;DR: Evidence that the global ecosystem as a whole is approaching a planetary-scale critical transition as a result of human influence is reviewed, highlighting the need to improve biological forecasting by detecting early warning signs of critical transitions.
Abstract: There is evidence that human influence may be forcing the global ecosystem towards a rapid, irreversible, planetary-scale shift into a state unknown in human experience. Most forecasts of how the biosphere will change in response to human activity are rooted in projecting trajectories. Such models tend not anticipate critical transitions or tipping points, although recent work indicates a high probability of those taking place. And, at a local scale, ecosystems are known to shift abruptly between states when critical thresholds are passed. These authors review the evidence from across ecology and palaeontology that such a transition is being approached on the scale of the entire biosphere. They go on to suggest how biological forecasting might be improved to allow us to detect early warning signs of critical transitions on a global, as well as local, scale. Localized ecological systems are known to shift abruptly and irreversibly from one state to another when they are forced across critical thresholds. Here we review evidence that the global ecosystem as a whole can react in the same way and is approaching a planetary-scale critical transition as a result of human influence. The plausibility of a planetary-scale ‘tipping point’ highlights the need to improve biological forecasting by detecting early warning signs of critical transitions on global as well as local scales, and by detecting feedbacks that promote such transitions. It is also necessary to address root causes of how humans are forcing biological changes.

Journal ArticleDOI
TL;DR: Although the underlying mechanisms remain largely unknown, particularly in humans, mechanistic insights are emerging from experimental model systems, which have implications for structuring future research and understanding disease and development.
Abstract: Epigenetic phenomena in animals and plants are mediated by DNA methylation and stable chromatin modifications. There has been considerable interest in whether environmental factors modulate the establishment and maintenance of epigenetic modifications, and could thereby influence gene expression and phenotype. Chemical pollutants, dietary components, temperature changes and other external stresses can indeed have long-lasting effects on development, metabolism and health, sometimes even in subsequent generations. Although the underlying mechanisms remain largely unknown, particularly in humans, mechanistic insights are emerging from experimental model systems. These have implications for structuring future research and understanding disease and development.

Journal ArticleDOI
29 Jun 2012-Science
TL;DR: Comparative analyses of 31 fungal genomes suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species.
Abstract: Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non-lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.

Journal ArticleDOI
TL;DR: In this article, an analysis of organic carbon data from just under one thousand seagrass meadows indicates that, globally, these systems could store between 4.2 and 8.4 Pg carbon.
Abstract: Seagrass meadows are some of the most productive ecosystems on Earth. An analysis of organic carbon data from just under one thousand seagrass meadows indicates that, globally, these systems could store between 4.2 and 8.4 Pg carbon.

Journal ArticleDOI
TL;DR: The presence of both rRNA and rDNA sequences, taking into account introns (crucial for eukaryotic sequences), a normalized eight terms ranked-taxonomy and updates of new GenBank releases were made possible by a long-term collaboration between experts in taxonomy and computer scientists.
Abstract: The interrogation of genetic markers in environmental meta-barcoding studies is currently seriously hindered by the lack of taxonomically curated reference data sets for the targeted genes. The Protist Ribosomal Reference database (PR 2 , http://ssurrna.org/) provides a unique access to eukaryotic small sub-unit (SSU) ribosomal RNA and DNA sequences, with curated taxonomy. The database mainly consists of nuclear-encoded protistan sequences. However, metazoans, land plants, macrosporic fungi and eukaryotic organelles (mitochondrion, plastid and others) are also included because they are useful for the analysis of hightroughput sequencing data sets. Introns and putative chimeric sequences have been also carefully checked. Taxonomic assignation of sequences consists of eight unique taxonomic fields. In total,

Journal ArticleDOI
TL;DR: It is demonstrated that 100% light absorption can take place in a single patterned sheet of doped graphene, relevant for infrared light detectors and sources, which can be made tunable via electrostatic doping of graphene.
Abstract: We demonstrate that 100% light absorption can take place in a single patterned sheet of doped graphene. General analysis shows that a planar array of small particles with losses exhibits full absorption under critical-coupling conditions provided the cross section of each individual particle is comparable to the area of the lattice unit cell. Specifically, arrays of doped graphene nanodisks display full absorption when supported on a substrate under total internal reflection and also when lying on a dielectric layer coating a metal. Our results are relevant for infrared light detectors and sources, which can be made tunable via electrostatic doping of graphene.

Journal ArticleDOI
Sebastián F. Sánchez1, Robert C. Kennicutt2, A. Gil de Paz3, G. van de Ven4, José M. Vílchez1, Lutz Wisotzki5, C. J. Walcher5, D. Mast1, J. A. L. Aguerri6, J. A. L. Aguerri1, Sergio Albiol-Pérez7, Almudena Alonso-Herrero1, João Alves8, J. Bakos1, J. Bakos6, T. Bartakova9, Joss Bland-Hawthorn10, Alessandro Boselli11, D. J. Bomans12, África Castillo-Morales3, C. Cortijo-Ferrero1, A. de Lorenzo-Cáceres1, A. de Lorenzo-Cáceres6, A. del Olmo1, Ralf-Jürgen Dettmar12, Angeles I. Díaz13, Simon Ellis10, Simon Ellis14, Jesús Falcón-Barroso1, Jesús Falcón-Barroso6, Hector Flores15, Anna Gallazzi16, Begoña García-Lorenzo1, Begoña García-Lorenzo6, R. M. González Delgado1, Nicolas Gruel, Tim Haines17, C. Hao18, Bernd Husemann5, J. Iglesias-Páramo1, Knud Jahnke4, Benjamin D. Johnson19, Bruno Jungwiert20, Bruno Jungwiert21, Veselina Kalinova4, C. Kehrig5, D. Kupko5, Angel R. Lopez-Sanchez14, Angel R. Lopez-Sanchez22, Mariya Lyubenova4, R. A. Marino1, R. A. Marino3, E. Mármol-Queraltó3, E. Mármol-Queraltó1, I. Márquez1, J. Masegosa1, Sharon E. Meidt4, Jairo Méndez-Abreu6, Jairo Méndez-Abreu1, Ana Monreal-Ibero1, C. Montijo1, A. Mourao23, G. Palacios-Navarro7, Polychronis Papaderos24, Anna Pasquali25, Reynier Peletier, Enrique Pérez1, I. Pérez26, Andreas Quirrenbach, M. Relaño26, F. F. Rosales-Ortega1, F. F. Rosales-Ortega13, Martin Roth5, T. Ruiz-Lara26, Patricia Sanchez-Blazquez13, C. Sengupta1, R. Singh4, Vallery Stanishev23, Scott Trager27, Alexandre Vazdekis1, Alexandre Vazdekis6, Kerttu Viironen1, Vivienne Wild28, Stefano Zibetti16, Bodo L. Ziegler8 
TL;DR: The Calar Alto Legacy Integral Field Area (CALIFA) survey as discussed by the authors was designed to provide a first step in this direction by obtaining spatially resolved spectroscopic information of a diameter selected sample of similar to 600 galaxies in the Local Universe.
Abstract: The final product of galaxy evolution through cosmic time is the population of galaxies in the local universe. These galaxies are also those that can be studied in most detail, thus providing a stringent benchmark for our understanding of galaxy evolution. Through the huge success of spectroscopic single-fiber, statistical surveys of the Local Universe in the last decade, it has become clear, however, that an authoritative observational description of galaxies will involve measuring their spatially resolved properties over their full optical extent for a statistically significant sample. We present here the Calar Alto Legacy Integral Field Area (CALIFA) survey, which has been designed to provide a first step in this direction. We summarize the survey goals and design, including sample selection and observational strategy. We also showcase the data taken during the first observing runs (June/July 2010) and outline the reduction pipeline, quality control schemes and general characteristics of the reduced data. This survey is obtaining spatially resolved spectroscopic information of a diameter selected sample of similar to 600 galaxies in the Local Universe (0.005 < z < 0.03). CALIFA has been designed to allow the building of two-dimensional maps of the following quantities: (a) stellar populations: ages and metallicities; (b) ionized gas: distribution, excitation mechanism and chemical abundances; and (c) kinematic properties: both from stellar and ionized gas components. CALIFA uses the PPAK integral field unit (IFU), with a hexagonal field-of-view of similar to 1.3 square', with a 100% covering factor by adopting a three-pointing dithering scheme. The optical wavelength range is covered from 3700 to 7000 angstrom, using two overlapping setups (V500 and V1200), with different resolutions: R similar to 850 and R similar to 1650, respectively. CALIFA is a legacy survey, intended for the community. The reduced data will be released, once the quality has been guaranteed. The analyzed data fulfill the expectations of the original observing proposal, on the basis of a set of quality checks and exploratory analysis: (i) the final datacubes reach a 3 sigma limiting surface brightness depth of similar to 23.0 mag/arcsec(2) for the V500 grating data (similar to 22.8 mag/arcsec(2) for V1200); (ii) about similar to 70% of the covered field-of-view is above this 3 sigma limit; (iii) the data have a blue-to-red relative flux calibration within a few percent in most of the wavelength range; (iv) the absolute flux calibration is accurate within similar to 8% with respect to SDSS; (v) the measured spectral resolution is similar to 85 km s(-1) for V1200 (similar to 150 km s(-1) for V500); (vi) the estimated accuracy of the wavelength calibration is similar to 5 km s(-1) for the V1200 data (similar to 10 km s(-1) for the V500 data); (vii) the aperture matched CALIFA and SDSS spectra are qualitatively and quantitatively similar. Finally, we show that we are able to carry out all measurements indicated above, recovering the properties of the stellar populations, the ionized gas and the kinematics of both components. The associated maps illustrate the spatial variation of these parameters across the field, reemphasizing the redshift dependence of single aperture spectroscopic measurements. We conclude from this first look at the data that CALIFA will be an important resource for archaeological studies of galaxies in the Local Universe.

Journal ArticleDOI
TL;DR: It is shown that there is no universal measure of impact and the pattern observed depends on the ecological measure examined, and some species traits, especially life form, stature and pollination syndrome, may provide a means to predict impact, regardless of the particular habitat and geographical region invaded.
Abstract: With the growing body of literature assessing the impact of invasive alien plants on resident species and ecosystems, a comprehensive assessment of the relationship between invasive species traits and environmental settings of invasion on the characteristics of impacts is needed. Based on 287 publications with 1551 individual cases that addressed the impact of 167 invasive plant species belonging to 49 families, we present the first global overview of frequencies of significant and non-significant ecological impacts and their directions on 15 outcomes related to the responses of resident populations, species, communities and ecosystems. Species and community outcomes tend to decline following invasions, especially those for plants, but the abundance and richness of the soil biota, as well as concentrations of soil nutrients and water, more often increase than decrease following invasion. Data mining tools revealed that invasive plants exert consistent significant impacts on some outcomes (survival of resident biota, activity of resident animals, resident community productivity, mineral and nutrient content in plant tissues, and fire frequency and intensity), whereas for outcomes at the community level, such as species richness, diversity and soil resources, the significance of impacts is determined by interactions between species traits and the biome invaded. The latter outcomes are most likely to be impacted by annual grasses, and by wind pollinated trees invading mediterranean or tropical biomes. One of the clearest signals in this analysis is that invasive plants are far more likely to cause significant impacts on resident plant and animal richness on islands rather than mainland. This study shows that there is no universal measure of impact and the pattern observed depends on the ecological measure examined. Although impact is strongly context dependent, some species traits, especially life form, stature and pollination syndrome, may provide a means to predict impact, regardless of the particular habitat and geographical region invaded.

Journal ArticleDOI
TL;DR: An overview about biological applications of magnetic colloidal nanoparticles will be given, which comprises their synthesis, characterization, and in vitro and in vivo applications, to address the remaining challenges for an extended application of magnetic nanoparticles in medicine.
Abstract: In this review an overview about biological applications of magnetic colloidal nanoparticles will be given, which comprises their synthesis, characterization, and in vitro and in vivo applications. The potential future role of magnetic nanoparticles compared to other functional nanoparticles will be discussed by highlighting the possibility of integration with other nanostructures and with existing biotechnology as well as by pointing out the specific properties of magnetic colloids. Current limitations in the fabrication process and issues related with the outcome of the particles in the body will be also pointed out in order to address the remaining challenges for an extended application of magnetic nanoparticles in medicine.

Journal ArticleDOI
TL;DR: In this paper, a review of magnetoelectric domain walls is presented, focusing on magneto-electrics and multiferroics but making comparisons where possible with magnetic domains and domain walls.
Abstract: Domains in ferroelectrics were considered to be well understood by the middle of the last century: They were generally rectilinear, and their walls were Ising-like. Their simplicity stood in stark contrast to the more complex Bloch walls or N\'eel walls in magnets. Only within the past decade and with the introduction of atomic-resolution studies via transmission electron microscopy, electron holography, and atomic force microscopy with polarization sensitivity has their real complexity been revealed. Additional phenomena appear in recent studies, especially of magnetoelectric materials, where functional properties inside domain walls are being directly measured. In this paper these studies are reviewed, focusing attention on ferroelectrics and multiferroics but making comparisons where possible with magnetic domains and domain walls. An important part of this review will concern device applications, with the spotlight on a new paradigm of ferroic devices where the domain walls, rather than the domains, are the active element. Here magnetic wall microelectronics is already in full swing, owing largely to the work of Cowburn and of Parkin and their colleagues. These devices exploit the high domain wall mobilities in magnets and their resulting high velocities, which can be supersonic, as shown by Kreines' and co-workers 30 years ago. By comparison, nanoelectronic devices employing ferroelectric domain walls often have slower domain wall speeds, but may exploit their smaller size as well as their different functional properties. These include domain wall conductivity (metallic or even superconducting in bulk insulating or semiconducting oxides) and the fact that domain walls can be ferromagnetic while the surrounding domains are not.

Journal ArticleDOI
TL;DR: In this article, an emerging Dirac liquid of Lorentz invariant quasi-particles in the weak coupling regime and strongly correlated electronic states in the strong coupling regime is discussed.
Abstract: We review the problem of electron-electron interactions in graphene. Starting from the screening of long range interactions in these systems, we discuss the existence of an emerging Dirac liquid of Lorentz invariant quasi-particles in the weak coupling regime, and strongly correlated electronic states in the strong coupling regime. We also analyze the analogy and connections between the many-body problem and the Coulomb impurity problem. The problem of the magnetic instability and Kondo effect of impurities and/or adatoms in graphene is also discussed in analogy with classical models of many-body effects in ordinary metals. We show that Lorentz invariance plays a fundamental role and leads to effects that span the whole spectrum, from the ultraviolet to the infrared. The effect of an emerging Lorentz invariance is also discussed in the context of finite size and edge effects as well as mesoscopic physics. We also briefly discuss the effects of strong magnetic fields in single layers and review some of the main aspects of the many-body problem in graphene bilayers. In addition to reviewing the fully understood aspects of the many-body problem in graphene, we show that a plethora of interesting issues remain open, both theoretically and experimentally, and that the field of graphene research is still exciting and vibrant.

Journal ArticleDOI
13 Jan 2012-Science
TL;DR: A global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth’s land surface and support over 38% of the human population, suggests that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in dryland.
Abstract: Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth’s land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.

Journal ArticleDOI
TL;DR: The Cluster Lensing And Supernova Survey with Hubble (CLASH) as mentioned in this paper is a 524-orbit Multi-Cycle Treasury Program to use the gravitational lensing properties of 25 galaxy clusters to accurately constrain their mass distributions.
Abstract: The Cluster Lensing And Supernova survey with Hubble (CLASH) is a 524-orbit Multi-Cycle Treasury Program to use the gravitational lensing properties of 25 galaxy clusters to accurately constrain their mass distributions. The survey, described in detail in this paper, will definitively establish the degree of concentration of dark matter in the cluster cores, a key prediction of structure formation models. The CLASH cluster sample is larger and less biased than current samples of space-based imaging studies of clusters to similar depth, as we have minimized lensing-based selection that favors systems with overly dense cores. Specifically, 20 CLASH clusters are solely X-ray selected. The X-ray-selected clusters are massive (kT > 5 keV) and, in most cases, dynamically relaxed. Five additional clusters are included for their lensing strength (θ_Ein > 35" at z_s = 2) to optimize the likelihood of finding highly magnified high-z (z > 7) galaxies. A total of 16 broadband filters, spanning the near-UV to near-IR, are employed for each 20-orbit campaign on each cluster. These data are used to measure precise (σ_z ~ 0.02(1 + z)) photometric redshifts for newly discovered arcs. Observations of each cluster are spread over eight epochs to enable a search for Type Ia supernovae at z > 1 to improve constraints on the time dependence of the dark energy equation of state and the evolution of supernovae. We present newly re-derived X-ray luminosities, temperatures, and Fe abundances for the CLASH clusters as well as a representative source list for MACS1149.6+2223 (z = 0.544).

Journal ArticleDOI
01 Jul 2012-Ecology
TL;DR: Critics of bioclimatic envelope models are reviewed to suggest that criticism has often been misplaced, resulting from confusion between what the models actually deliver and what users wish that they would express.
Abstract: Bioclimatic envelope models use associations between aspects of climate and species' occurrences to estimate the conditions that are suitable to maintain viable populations. Once bioclimatic envelopes are characterized, they can be applied to a variety of questions in ecology, evolution, and conservation. However, some have questioned the usefulness of these models, because they may be based on implausible assumptions or may be contradicted by empirical evidence. We review these areas of contention, and suggest that criticism has often been misplaced, resulting from confusion between what the models actually deliver and what users wish that they would express. Although improvements in data and methods will have some effect, the usefulness of these models is contingent on their appropriate use, and they will improve mainly via better awareness of their conceptual basis, strengths, and limitations.

Journal ArticleDOI
Seb Oliver1, James J. Bock2, James J. Bock3, Bruno Altieri4, Alexandre Amblard5, V. Arumugam6, Herve Aussel7, Tom Babbedge8, Alexandre Beelen9, Matthieu Béthermin7, Matthieu Béthermin9, Andrew Blain2, Alessandro Boselli10, C. Bridge2, Drew Brisbin11, V. Buat10, Denis Burgarella10, N. Castro-Rodríguez12, N. Castro-Rodríguez13, Antonio Cava14, P. Chanial7, Michele Cirasuolo15, David L. Clements8, A. Conley16, L. Conversi4, Asantha Cooray2, Asantha Cooray17, C. D. Dowell2, C. D. Dowell3, Elizabeth Dubois1, Eli Dwek18, Simon Dye19, Stephen Anthony Eales20, David Elbaz7, Duncan Farrah1, A. Feltre21, P. Ferrero12, P. Ferrero13, N. Fiolet9, N. Fiolet22, M. Fox8, Alberto Franceschini21, Walter Kieran Gear20, E. Giovannoli10, Jason Glenn16, Yan Gong17, E. A. González Solares23, Matthew Joseph Griffin20, Mark Halpern24, Martin Harwit, Evanthia Hatziminaoglou, Sebastien Heinis10, Peter Hurley1, Ho Seong Hwang7, A. Hyde8, Edo Ibar15, O. Ilbert10, K. G. Isaak25, Rob Ivison6, Rob Ivison15, Guilaine Lagache9, E. Le Floc'h7, L. R. Levenson2, L. R. Levenson3, B. Lo Faro21, Nanyao Y. Lu2, S. C. Madden7, Bruno Maffei26, Georgios E. Magdis7, G. Mainetti21, Lucia Marchetti21, G. Marsden24, J. Marshall2, J. Marshall3, A. M. J. Mortier8, Hien Nguyen3, Hien Nguyen2, B. O'Halloran8, Alain Omont22, Mat Page27, P. Panuzzo7, Andreas Papageorgiou20, H. Patel8, Chris Pearson28, Chris Pearson29, Ismael Perez-Fournon12, Ismael Perez-Fournon13, Michael Pohlen20, Jonathan Rawlings27, Gwenifer Raymond20, Dimitra Rigopoulou30, Dimitra Rigopoulou28, L. Riguccini7, D. Rizzo8, Giulia Rodighiero21, Isaac Roseboom1, Isaac Roseboom6, Michael Rowan-Robinson8, M. Sanchez Portal4, Benjamin L. Schulz2, Douglas Scott24, Nick Seymour27, Nick Seymour31, D. L. Shupe2, A. J. Smith1, Jamie Stevens32, M. Symeonidis27, Markos Trichas33, K. E. Tugwell27, Mattia Vaccari21, Ivan Valtchanov4, Joaquin Vieira2, Marco P. Viero2, L. Vigroux22, Lifan Wang1, Robyn L. Ward1, Julie Wardlow17, G. Wright15, C. K. Xu2, Michael Zemcov2, Michael Zemcov3 
TL;DR: The Herschel Multi-tiered Extragalactic Survey (HerMES) is a legacy program designed to map a set of nested fields totalling ∼380deg^2 as mentioned in this paper.
Abstract: The Herschel Multi-tiered Extragalactic Survey (HerMES) is a legacy programme designed to map a set of nested fields totalling ∼380 deg^2. Fields range in size from 0.01 to ∼20 deg^2, using the Herschel-Spectral and Photometric Imaging Receiver (SPIRE) (at 250, 350 and 500 μm) and the Herschel-Photodetector Array Camera and Spectrometer (PACS) (at 100 and 160 μm), with an additional wider component of 270 deg^2 with SPIRE alone. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the reprocessed optical and ultraviolet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multiwavelength understanding of galaxy formation and evolution. The survey will detect of the order of 100 000 galaxies at 5σ in some of the best-studied fields in the sky. Additionally, HerMES is closely coordinated with the PACS Evolutionary Probe survey. Making maximum use of the full spectrum of ancillary data, from radio to X-ray wavelengths, it is designed to facilitate redshift determination, rapidly identify unusual objects and understand the relationships between thermal emission from dust and other processes. Scientific questions HerMES will be used to answer include the total infrared emission of galaxies, the evolution of the luminosity function, the clustering properties of dusty galaxies and the properties of populations of galaxies which lie below the confusion limit through lensing and statistical techniques. This paper defines the survey observations and data products, outlines the primary scientific goals of the HerMES team, and reviews some of the early results.

Journal ArticleDOI
TL;DR: The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery.
Abstract: Summary: Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.