scispace - formally typeset
Open AccessJournal ArticleDOI

GREAT improves functional interpretation of cis-regulatory regions

TLDR
The Genomic Regions Enrichment of Annotations Tool (GREAT) is developed to analyze the functional significance of cis-regulatory regions identified by localized measurements of DNA binding events across an entire genome.
Abstract
We developed the Genomic Regions Enrichment of Annotations Tool (GREAT) to analyze the functional significance of cis-regulatory regions identified by localized measurements of DNA binding events across an entire genome. Whereas previous methods took into account only binding proximal to genes, GREAT is able to properly incorporate distal binding sites and control for false positives using a binomial test over the input genomic regions. GREAT incorporates annotations from 20 ontologies and is available as a web application. Applying GREAT to data sets from chromatin immunoprecipitation coupled with massively parallel sequencing (ChIP-seq) of multiple transcription-associated factors, including SRF, NRSF, GABP, Stat3 and p300 in different developmental contexts, we recover many functions of these factors that are missed by existing gene-based tools, and we generate testable hypotheses. The utility of GREAT is not limited to ChIP-seq, as it could also be applied to open chromatin, localized epigenomic markers and similar functional data sets, as well as comparative genomics sets.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

An integrated encyclopedia of DNA elements in the human genome

TL;DR: The Encyclopedia of DNA Elements project provides new insights into the organization and regulation of the authors' genes and genome, and is an expansive resource of functional annotations for biomedical research.
Journal Article

An integrated encyclopedia of DNA elements in the human genome.

ENCODEConsortium
- 01 Jan 2012 - 
TL;DR: The Encyclopedia of DNA Elements project provides new insights into the organization and regulation of the authors' genes and genome, and is an expansive resource of functional annotations for biomedical research.
Journal ArticleDOI

Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.

TL;DR: A biologist-oriented portal that provides a gene list annotation, enrichment and interactome resource and enables integrated analysis of multi-OMICs datasets, Metascape is an effective and efficient tool for experimental biologists to comprehensively analyze and interpret OMICs-based studies in the big data era.
Journal ArticleDOI

Enrichr: a comprehensive gene set enrichment analysis web server 2016 update

TL;DR: A significant update to one of the tools in this domain called Enrichr, a comprehensive resource for curated gene sets and a search engine that accumulates biological knowledge for further biological discoveries is presented.
Journal ArticleDOI

Integrative analysis of 111 reference human epigenomes

Anshul Kundaje, +123 more
- 19 Feb 2015 - 
TL;DR: It is shown that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease.
References
More filters
Journal ArticleDOI

Gene Ontology: tool for the unification of biology

TL;DR: The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing.
Journal ArticleDOI

The Human Genome Browser at UCSC

TL;DR: A mature web tool for rapid and reliable display of any requested portion of the genome at any scale, together with several dozen aligned annotation tracks, is provided at http://genome.ucsc.edu.
Journal ArticleDOI

Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project

Ewan Birney, +320 more
- 14 Jun 2007 - 
TL;DR: Functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project are reported, providing convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts.
Related Papers (5)
Trending Questions (1)