scispace - formally typeset
Journal ArticleDOI

Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors

Reads0
Chats0
TLDR
A novel semiconducting material is proposed—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs), which are fabricated on polyethylene terephthalate sheets and exhibit saturation mobilities and device characteristics are stable during repetitive bending of the TTFT sheet.
Abstract
Transparent electronic devices formed on flexible substrates are expected to meet emerging technological demands where silicon-based electronics cannot provide a solution. Examples of active flexible applications include paper displays and wearable computers1. So far, mainly flexible devices based on hydrogenated amorphous silicon (a-Si:H)2,3,4,5 and organic semiconductors2,6,7,8,9,10 have been investigated. However, the performance of these devices has been insufficient for use as transistors in practical computers and current-driven organic light-emitting diode displays. Fabricating high-performance devices is challenging, owing to a trade-off between processing temperature and device performance. Here, we propose to solve this problem by using a novel semiconducting material—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs). The a-IGZO is deposited on polyethylene terephthalate at room temperature and exhibits Hall effect mobilities exceeding 10 cm2 V-1 s-1, which is an order of magnitude larger than for hydrogenated amorphous silicon. TTFTs fabricated on polyethylene terephthalate sheets exhibit saturation mobilities of 6–9 cm2 V-1 s-1, and device characteristics are stable during repetitive bending of the TTFT sheet.

read more

Citations
More filters
Patent

Semiconductor device, electronic device, and method of manufacturing semiconductor device

TL;DR: In this article, the authors propose a technique by which a pattern of wirings or the like which is partially constitutes a semiconductor device or a display device can be formed with a desired shape with controllability.
Patent

Thin film transistor including selectively crystallized channel layer and method of manufacturing the thin film transistor

TL;DR: In this paper, a thin-film transistor (TFT) with a selectively crystallized channel layer and a method of manufacturing the TFT is presented, where the metal component can be injected into the channel layer by depositing and heat-treating a metal layer or by ion-implantation.
Patent

Field-effect transistor and method for manufacturing the same

TL;DR: A method for manufacturing a field effect transistor includes the steps of forming a source electrode and a drain electrode each containing hydrogen or deuterium, forming an oxide semiconductor layer in which the electrical resistance is decreased if hydrogen or Deuterium is added as discussed by the authors.
Patent

Method of fabricating oxide semiconductor device

TL;DR: In this article, a method for fabricating a device using an oxide semiconductor, including a process of forming the oxide on a substrate and changing the conductivity of the oxide by irradiating a predetermined region thereof with an energy ray, is presented.
Patent

Method of dry etching oxide semiconductor film

TL;DR: In this article, a dry etching method for an oxide semiconductor film containing at least In, Ga, and Zn was proposed, provided that the halogen-based gas is available.
References
More filters
Journal ArticleDOI

Organic Thin Film Transistors for Large Area Electronics

TL;DR: In this article, the authors present new insight into conduction mechanisms and performance characteristics, as well as opportunities for modeling properties of organic thin-film transistors (OTFTs) and discuss progress in the growing field of n-type OTFTs.
Journal ArticleDOI

Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor

TL;DR: The fabrication of transparent field-effect transistors using a single-crystalline thin-film transparent oxide semiconductor, InGaO3(ZnO)5, as an electron channel and amorphous hafnium oxide as a gate insulator provides a step toward the realization of transparent electronics for next-generation optoelectronics.
Book

Fundamentals of Modern VLSI Devices

Yuan Taur, +1 more
TL;DR: In this article, the authors highlight the intricate interdependencies and subtle tradeoffs between various practically important device parameters, and also provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices.
Journal ArticleDOI

P-type electrical conduction in transparent thin films of CuAlO2

TL;DR: In this paper, the authors describe a strategy for identifying oxide materials that should combine p-type conductivity with good optical transparency, and illustrate the potential of this approach by reporting the properties of thin films of CuAlO2, a transparent oxide having room-temperature p- type conductivity up to 1'S'cm−1.
Journal ArticleDOI

Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films

TL;DR: In this article, the authors investigated carrier transport in a crystalline oxide semiconductor InGaO3(ZnO)5 using single-crystalline thin films and showed that when carrier concentration is less than 2×1018cm−3, logarithm of electrical conductivity decreases in proportion to T−1∕4 and room-temperature Hall mobility was as low as ∼1cm2(Vs)−1.
Related Papers (5)