scispace - formally typeset
Journal ArticleDOI

Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors

TLDR
A novel semiconducting material is proposed—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs), which are fabricated on polyethylene terephthalate sheets and exhibit saturation mobilities and device characteristics are stable during repetitive bending of the TTFT sheet.
Abstract
Transparent electronic devices formed on flexible substrates are expected to meet emerging technological demands where silicon-based electronics cannot provide a solution. Examples of active flexible applications include paper displays and wearable computers1. So far, mainly flexible devices based on hydrogenated amorphous silicon (a-Si:H)2,3,4,5 and organic semiconductors2,6,7,8,9,10 have been investigated. However, the performance of these devices has been insufficient for use as transistors in practical computers and current-driven organic light-emitting diode displays. Fabricating high-performance devices is challenging, owing to a trade-off between processing temperature and device performance. Here, we propose to solve this problem by using a novel semiconducting material—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs). The a-IGZO is deposited on polyethylene terephthalate at room temperature and exhibits Hall effect mobilities exceeding 10 cm2 V-1 s-1, which is an order of magnitude larger than for hydrogenated amorphous silicon. TTFTs fabricated on polyethylene terephthalate sheets exhibit saturation mobilities of 6–9 cm2 V-1 s-1, and device characteristics are stable during repetitive bending of the TTFT sheet.

read more

Citations
More filters
Journal ArticleDOI

Subgap Density-of-States-Based Amorphous Oxide Thin Film Transistor Simulator (DeAOTS)

TL;DR: In this paper, the authors proposed the Subgap Density of states (DOS)-based Amorphous Oxide TFT Simulator (DeAOTS) for amorphous indium-gallium-zincoxide (a-IGZO) TFTs.
Journal ArticleDOI

Patternable transparent carbon nanotube films for electrochromic devices

Abstract: This paper reports the application of transparent single walled carbon nanotube films on polyethylene terephthalate as flexible electrodes in electrochromic devices using polyaniline as the active layer, where Sn-doped In2O3 on plastic is not suitable due to its high sensitivity to acids. Patterning of nanotube films with resolution of 50μm is achieved by simply using the transfer printing method based on polydimethylsiloxane stamps. The combination of high optical transparency, low sheet resistance, robust mechanical and environmental stabilities, and ease of patterning of nanotube films meets the requirements for flexible voltage-driven type of displays.
Journal ArticleDOI

Effect of Annealing on Defect Elimination for High Mobility Amorphous Indium-Zinc-Tin-Oxide Thin-Film Transistor

TL;DR: In this paper, the authors studied the correlation of postannealing treatment on the electrical performance of amorphous In-Zn-Sn-O thin-film transistor (a-IZTO TFT).
Journal ArticleDOI

Local structure and conduction mechanism in amorphous In–Ga–Zn–O films

TL;DR: In this paper, the local structures of amorphous In-Ga-Zn-O (InGaZnO4 and In2Ga2XnO7) films were examined by x-ray absorption spectroscopy and fine structure analysis.
Journal ArticleDOI

Debye Length and Active Layer Thickness-Dependent Performance Variations of Amorphous Oxide-Based TFTs

TL;DR: In this paper, the active layer thickness-dependent performance variations of amorphous oxide-based semiconductor thin-film transistors (AOS TFTs), which are typically operated in depletion mode by using an ATLAS 2D device simulator, were analyzed.
References
More filters
Journal ArticleDOI

Organic Thin Film Transistors for Large Area Electronics

TL;DR: In this article, the authors present new insight into conduction mechanisms and performance characteristics, as well as opportunities for modeling properties of organic thin-film transistors (OTFTs) and discuss progress in the growing field of n-type OTFTs.
Journal ArticleDOI

Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor

TL;DR: The fabrication of transparent field-effect transistors using a single-crystalline thin-film transparent oxide semiconductor, InGaO3(ZnO)5, as an electron channel and amorphous hafnium oxide as a gate insulator provides a step toward the realization of transparent electronics for next-generation optoelectronics.
Book

Fundamentals of Modern VLSI Devices

Yuan Taur, +1 more
TL;DR: In this article, the authors highlight the intricate interdependencies and subtle tradeoffs between various practically important device parameters, and also provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices.
Journal ArticleDOI

P-type electrical conduction in transparent thin films of CuAlO2

TL;DR: In this paper, the authors describe a strategy for identifying oxide materials that should combine p-type conductivity with good optical transparency, and illustrate the potential of this approach by reporting the properties of thin films of CuAlO2, a transparent oxide having room-temperature p- type conductivity up to 1'S'cm−1.
Journal ArticleDOI

Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films

TL;DR: In this article, the authors investigated carrier transport in a crystalline oxide semiconductor InGaO3(ZnO)5 using single-crystalline thin films and showed that when carrier concentration is less than 2×1018cm−3, logarithm of electrical conductivity decreases in proportion to T−1∕4 and room-temperature Hall mobility was as low as ∼1cm2(Vs)−1.
Related Papers (5)