scispace - formally typeset
Journal ArticleDOI

The immunology of asthma

Bart N. Lambrecht, +1 more
- 01 Jan 2015 - 
- Vol. 16, Iss: 1, pp 45-56
Reads0
Chats0
TLDR
Results from in-depth molecular studies of mouse models in light of the results from the first clinical trials targeting key cytokines in humans are discussed and the extraordinary heterogeneity of asthma is described.
Abstract
Asthma is a common disease that affects 300 million people worldwide. Given the large number of eosinophils in the airways of people with mild asthma, and verified by data from murine models, asthma was long considered the hallmark T helper type 2 (T(H)2) disease of the airways. It is now known that some asthmatic inflammation is neutrophilic, controlled by the T(H)17 subset of helper T cells, and that some eosinophilic inflammation is controlled by type 2 innate lymphoid cells (ILC2 cells) acting together with basophils. Here we discuss results from in-depth molecular studies of mouse models in light of the results from the first clinical trials targeting key cytokines in humans and describe the extraordinary heterogeneity of asthma.

read more

Citations
More filters
Journal ArticleDOI

Transient receptor potential cation channel subfamily V (TRPV) and its importance in asthma.

TL;DR: In this article , the authors summarized the contribution of transient receptor potential (TRP) ion channels to the pathogenesis of asthma and proposed a novel biomarker for asthma in children, which may serve as novel therapeutic targets for this ailment.
Journal ArticleDOI

A New aDENNDum to Genetics of Childhood Asthma.

TL;DR: Yang et al. as discussed by the authors showed that the asthma susceptibility gene DENND1B controls cytokine production in Th2 lymphocytes by controlling the rate of TCR internalization and routing to endosomes.
Journal ArticleDOI

β-Sitosterol inhibits ovalbumin-induced asthma-related inflammation by regulating dendritic cells

TL;DR: B-SIT improved symptoms in a rat model of asthma likely via the inhibition of inflammation by regulating dendritic cells.
Journal ArticleDOI

CD52-targeted depletion by Alemtuzumab ameliorates allergic airway hyperreactivity and lung inflammation.

TL;DR: In this paper, the potential of CD52-targeted depletion of type 2 immune cells for treating allergic AHR was explored, and it was shown that anti-CD52 therapy can prevent and remarkably reverse established IL-33-induced AHR by reducing airway resistance and alleviating lung inflammation.
References
More filters
Journal ArticleDOI

Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma

TL;DR: Atopic asthma is associated with activation in the bronchi of the interleukin-3, 4, and 5 and GM-CSF gene cluster, a pattern compatible with predominant activation of the TH2-like T-cell population.
Journal ArticleDOI

Interleukin-13: Central Mediator of Allergic Asthma

TL;DR: In this paper, the type 2 cytokine IL-13, which shares a receptor component and signaling pathways with IL-4, was found to be necessary and sufficient for the expression of allergic asthma.
Journal ArticleDOI

Eosinophilic inflammation in asthma.

TL;DR: Eosinophilic inflammation of the airways is correlated with the severity of asthma and these cells are likely to play a part in the epithelial damage seen in this disease.
Journal Article

Interleukin-13: Central mediator of allergic asthma

TL;DR: In this article, the type 2 cytokine IL-13, which shares a receptor component and signaling pathways with IL-4, was found to be necessary and sufficient for the expression of allergic asthma.
Journal ArticleDOI

Asthma phenotypes: the evolution from clinical to molecular approaches

TL;DR: Ongoing studies of large-scale, molecularly and genetically focused and extensively clinically characterized cohorts of asthma should enhance the ability to molecularly understand these phenotypes and lead to more targeted and personalized approaches to asthma therapy.
Related Papers (5)