scispace - formally typeset
Journal ArticleDOI

The immunology of asthma

Bart N. Lambrecht, +1 more
- 01 Jan 2015 - 
- Vol. 16, Iss: 1, pp 45-56
Reads0
Chats0
TLDR
Results from in-depth molecular studies of mouse models in light of the results from the first clinical trials targeting key cytokines in humans are discussed and the extraordinary heterogeneity of asthma is described.
Abstract
Asthma is a common disease that affects 300 million people worldwide. Given the large number of eosinophils in the airways of people with mild asthma, and verified by data from murine models, asthma was long considered the hallmark T helper type 2 (T(H)2) disease of the airways. It is now known that some asthmatic inflammation is neutrophilic, controlled by the T(H)17 subset of helper T cells, and that some eosinophilic inflammation is controlled by type 2 innate lymphoid cells (ILC2 cells) acting together with basophils. Here we discuss results from in-depth molecular studies of mouse models in light of the results from the first clinical trials targeting key cytokines in humans and describe the extraordinary heterogeneity of asthma.

read more

Citations
More filters
Journal ArticleDOI

USP38 critically promotes asthmatic pathogenesis by stabilizing JunB protein.

TL;DR: It is reported that the ubiquitin-specific protease USP38 is crucial for Th2-mediated allergic asthma, and represents the first identified deubiquitinase specifically for Th1 immunity and the associated asthma.
Journal ArticleDOI

Update in Asthma 2014

TL;DR: The original research reviewed here presents a cross-section of the state of the art of asthma research, representing a spectrum from large-scale epidemiological studies to focused, in vitro or ex vivo experiments.
Journal ArticleDOI

Therapeutic Application of an Extract of Helicobacter pylori Ameliorates the Development of Allergic Airway Disease

TL;DR: Application of H. pylori extract after sensitization effectively inhibits allergic airway disease and reduces airway inflammation and reduced airway remodeling, as assessed by goblet cell quantification.
Journal ArticleDOI

Oxidative damage and DNA damage in lungs of an ovalbumin-induced asthmatic murine model.

TL;DR: It was showed that oxidative damage and DNA damage existed in the airway of asthmatic mice, and NU7441 augmented DNA damage level, and moreover, it also attenuated infiltration of inflammatory cells and pro-inflammatory cytokine levels in astHmatic lungs.
References
More filters
Journal ArticleDOI

Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma

TL;DR: Atopic asthma is associated with activation in the bronchi of the interleukin-3, 4, and 5 and GM-CSF gene cluster, a pattern compatible with predominant activation of the TH2-like T-cell population.
Journal ArticleDOI

Interleukin-13: Central Mediator of Allergic Asthma

TL;DR: In this paper, the type 2 cytokine IL-13, which shares a receptor component and signaling pathways with IL-4, was found to be necessary and sufficient for the expression of allergic asthma.
Journal ArticleDOI

Eosinophilic inflammation in asthma.

TL;DR: Eosinophilic inflammation of the airways is correlated with the severity of asthma and these cells are likely to play a part in the epithelial damage seen in this disease.
Journal Article

Interleukin-13: Central mediator of allergic asthma

TL;DR: In this article, the type 2 cytokine IL-13, which shares a receptor component and signaling pathways with IL-4, was found to be necessary and sufficient for the expression of allergic asthma.
Journal ArticleDOI

Asthma phenotypes: the evolution from clinical to molecular approaches

TL;DR: Ongoing studies of large-scale, molecularly and genetically focused and extensively clinically characterized cohorts of asthma should enhance the ability to molecularly understand these phenotypes and lead to more targeted and personalized approaches to asthma therapy.
Related Papers (5)