scispace - formally typeset
Journal ArticleDOI

The immunology of asthma

Bart N. Lambrecht, +1 more
- 01 Jan 2015 - 
- Vol. 16, Iss: 1, pp 45-56
Reads0
Chats0
TLDR
Results from in-depth molecular studies of mouse models in light of the results from the first clinical trials targeting key cytokines in humans are discussed and the extraordinary heterogeneity of asthma is described.
Abstract
Asthma is a common disease that affects 300 million people worldwide. Given the large number of eosinophils in the airways of people with mild asthma, and verified by data from murine models, asthma was long considered the hallmark T helper type 2 (T(H)2) disease of the airways. It is now known that some asthmatic inflammation is neutrophilic, controlled by the T(H)17 subset of helper T cells, and that some eosinophilic inflammation is controlled by type 2 innate lymphoid cells (ILC2 cells) acting together with basophils. Here we discuss results from in-depth molecular studies of mouse models in light of the results from the first clinical trials targeting key cytokines in humans and describe the extraordinary heterogeneity of asthma.

read more

Citations
More filters
Journal ArticleDOI

Ma Huang Tang ameliorates bronchial asthma symptoms through the TLR9 pathway.

TL;DR: MHT could mitigate the pathological changes of acute asthma-like syndrome through inhibition of the TLR9 pathway and may provide a reference for the development of a novel therapy for patients with allergic asthma.
Journal ArticleDOI

Distal airways are protected from goblet cell metaplasia by diminished expression of IL‐13 signalling components

TL;DR: Increased mucus production is a critical factor impairing lung function in patients suffering from bronchial asthma, the most common chronic inflammatory lung disease worldwide.
Journal ArticleDOI

Repeated Allergen Exposure in A/J Mice Causes Steroid-Insensitive Asthma via a Defect in Glucocorticoid Receptor Bioavailability.

TL;DR: It is reported that repeated allergen exposure causes GC-insensitive asthma in A/J mice in a mechanism associated with decrease in GCR availability and subsequent loss of steroid capacity to modulate pivotal regulatory proteins, such as GATA-3, p-p38, MKP-1, and GILZ.
Journal ArticleDOI

Asthma-COPD overlap: current understanding and the utility of experimental models.

TL;DR: In this article, the authors review the current understanding of the clinical features of ACO and highlight the approaches that are best suited for developing representative experimental models of the ACO, which will identify underlying disease-causing mechanisms, as well as enabling the identification of novel therapeutic targets and providing a platform for assessing new ACO therapies.
Book ChapterDOI

Autophagy in chronic lung disease.

TL;DR: Recent advances on the role of autophagy in the pathogenesis of asthma, chronic obstructive pulmonary disease and emphysema, pulmonary arterial hypertension, and idiopathic pulmonary fibrosis are highlighted.
References
More filters
Journal ArticleDOI

Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma

TL;DR: Atopic asthma is associated with activation in the bronchi of the interleukin-3, 4, and 5 and GM-CSF gene cluster, a pattern compatible with predominant activation of the TH2-like T-cell population.
Journal ArticleDOI

Interleukin-13: Central Mediator of Allergic Asthma

TL;DR: In this paper, the type 2 cytokine IL-13, which shares a receptor component and signaling pathways with IL-4, was found to be necessary and sufficient for the expression of allergic asthma.
Journal ArticleDOI

Eosinophilic inflammation in asthma.

TL;DR: Eosinophilic inflammation of the airways is correlated with the severity of asthma and these cells are likely to play a part in the epithelial damage seen in this disease.
Journal Article

Interleukin-13: Central mediator of allergic asthma

TL;DR: In this article, the type 2 cytokine IL-13, which shares a receptor component and signaling pathways with IL-4, was found to be necessary and sufficient for the expression of allergic asthma.
Journal ArticleDOI

Asthma phenotypes: the evolution from clinical to molecular approaches

TL;DR: Ongoing studies of large-scale, molecularly and genetically focused and extensively clinically characterized cohorts of asthma should enhance the ability to molecularly understand these phenotypes and lead to more targeted and personalized approaches to asthma therapy.
Related Papers (5)