scispace - formally typeset

Journal ArticleDOI

Trends in glyphosate herbicide use in the United States and globally

02 Feb 2016-Environmental Sciences Europe (Springer)-Vol. 28, Iss: 1, pp 3-3

...read more

Content maybe subject to copyright    Report

Citations
More filters

Journal ArticleDOI
TL;DR: Current and future increase in food production must go along with production of food with better quality and with less toxic contaminants, which requires more cautious use of agrochemical through prior testing, careful risk assessment, and licensing.
Abstract: Agrochemicals have enabled to more than duplicate food production during the last century, and the current need to increase food production to feed a rapid growing human population maintains pressure on the intensive use of pesticides and fertilizers. However, worldwide surveys have documented the contamination and impact of agrochemical residues in soils, and terrestrial and aquatic ecosystems including coastal marine systems, and their toxic effects on humans and nonhuman biota. Although persistent organic chemicals have been phased out and replaced by more biodegradable chemicals, contamination by legacy residues and recent residues still impacts on the quality of human food, water, and environment. Current and future increase in food production must go along with production of food with better quality and with less toxic contaminants. Alternative paths to the intensive use of crop protection chemicals are open, such as genetically engineered organisms, organic farming, change of dietary habits, and development of food technologies. Agro industries need to further develop advanced practices to protect public health, which requires more cautious use of agrochemicals through prior testing, careful risk assessment, and licensing, but also through education of farmers and users in general, measures for better protection of ecosystems, and good practices for sustainable development of agriculture, fisheries, and aquaculture. Enhanced scientific research for new developments in food production and food safety, as well as for environmental protection, is a necessary part of this endeavor. Furthermore, worldwide agreement on good agriculture practices, including development of genetically modified organisms (GMOs) and their release for international agriculture, may be urgent to ensure the success of safe food production.

547 citations


Cites background from "Trends in glyphosate herbicide use ..."

  • ...At present, there is a widespread concern about effects of herbicides on human health, such as glyphosate that is of common use in agriculture and in cities to control weeds, and is a main carcinogenic agent (Araújo et al. 2016; Benbrook 2016)....

    [...]

  • ...Glyphosate is the most widely applied pesticide worldwide, and in the USA, in 2014 farmers applied glyphosate at a rate of about 1 kg/ha in croplands (Benbrook 2016)....

    [...]


Journal ArticleDOI
TL;DR: GBHs are the most heavily applied herbicide in the world and usage continues to rise; Worldwide, GBHs often contaminate drinking water sources, precipitation, and air, especially in agricultural regions and regulatory estimates of tolerable daily intakes for glyphosate in the United States and European Union are based on outdated science.
Abstract: The broad-spectrum herbicide glyphosate (common trade name “Roundup”) was first sold to farmers in 1974. Since the late 1970s, the volume of glyphosate-based herbicides (GBHs) applied has increased approximately 100-fold. Further increases in the volume applied are likely due to more and higher rates of application in response to the widespread emergence of glyphosate-resistant weeds and new, pre-harvest, dessicant use patterns. GBHs were developed to replace or reduce reliance on herbicides causing well-documented problems associated with drift and crop damage, slipping efficacy, and human health risks. Initial industry toxicity testing suggested that GBHs posed relatively low risks to non-target species, including mammals, leading regulatory authorities worldwide to set high acceptable exposure limits. To accommodate changes in GBH use patterns associated with genetically engineered, herbicide-tolerant crops, regulators have dramatically increased tolerance levels in maize, oilseed (soybeans and canola), and alfalfa crops and related livestock feeds. Animal and epidemiology studies published in the last decade, however, point to the need for a fresh look at glyphosate toxicity. Furthermore, the World Health Organization’s International Agency for Research on Cancer recently concluded that glyphosate is “probably carcinogenic to humans.” In response to changing GBH use patterns and advances in scientific understanding of their potential hazards, we have produced a Statement of Concern drawing on emerging science relevant to the safety of GBHs. Our Statement of Concern considers current published literature describing GBH uses, mechanisms of action, toxicity in laboratory animals, and epidemiological studies. It also examines the derivation of current human safety standards. We conclude that: (1) GBHs are the most heavily applied herbicide in the world and usage continues to rise; (2) Worldwide, GBHs often contaminate drinking water sources, precipitation, and air, especially in agricultural regions; (3) The half-life of glyphosate in water and soil is longer than previously recognized; (4) Glyphosate and its metabolites are widely present in the global soybean supply; (5) Human exposures to GBHs are rising; (6) Glyphosate is now authoritatively classified as a probable human carcinogen; (7) Regulatory estimates of tolerable daily intakes for glyphosate in the United States and European Union are based on outdated science. We offer a series of recommendations related to the need for new investments in epidemiological studies, biomonitoring, and toxicology studies that draw on the principles of endocrinology to determine whether the effects of GBHs are due to endocrine disrupting activities. We suggest that common commercial formulations of GBHs should be prioritized for inclusion in government-led toxicology testing programs such as the U.S. National Toxicology Program, as well as for biomonitoring as conducted by the U.S. Centers for Disease Control and Prevention.

474 citations


Journal ArticleDOI
TL;DR: It is hypothesized that the selection pressure for glyphosate-resistance in bacteria could lead to shifts in microbiome composition and increases in antibiotic resistance to clinically important antimicrobial agents, which would have an impact on plant, animal and human health.
Abstract: The herbicide glyphosate, N-(phosphonomethyl) glycine, has been used extensively in the past 40years, under the assumption that side effects were minimal. However, in recent years, concerns have increased worldwide about the potential wide ranging direct and indirect health effects of the large scale use of glyphosate. In 2015, the World Health Organization reclassified glyphosate as probably carcinogenic to humans. A detailed overview is given of the scientific literature on the movement and residues of glyphosate and its breakdown product aminomethyl phosphonic acid (AMPA) in soil and water, their toxicity to macro- and microorganisms, their effects on microbial compositions and potential indirect effects on plant, animal and human health. Although the acute toxic effects of glyphosate and AMPA on mammals are low, there are animal data raising the possibility of health effects associated with chronic, ultra-low doses related to accumulation of these compounds in the environment. Intensive glyphosate use has led to the selection of glyphosate-resistant weeds and microorganisms. Shifts in microbial compositions due to selective pressure by glyphosate may have contributed to the proliferation of plant and animal pathogens. Research on a link between glyphosate and antibiotic resistance is still scarce but we hypothesize that the selection pressure for glyphosate-resistance in bacteria could lead to shifts in microbiome composition and increases in antibiotic resistance to clinically important antimicrobial agents. We recommend interdisciplinary research on the associations between low level chronic glyphosate exposure, distortions in microbial communities, expansion of antibiotic resistance and the emergence of animal, human and plant diseases. Independent research is needed to revisit the tolerance thresholds for glyphosate residues in water, food and animal feed taking all possible health risks into account.

343 citations


Journal ArticleDOI
21 Oct 2019
Abstract: Pesticides are extensively used in modern agriculture and are an effective and economical way to enhance the yield quality and quantity, thus ensuring food security for the ever-growing population around the globe. Approximately, 2 million tonnes of pesticides are utilized annually worldwide, where China is the major contributing country, followed by the USA and Argentina, which is increasing rapidly. However, by the year 2020, the global pesticide usage has been estimated to increase up to 3.5 million tonnes. Although pesticides are beneficial for crop production point of view, extensive use of pesticides can possess serious consequences because of their bio-magnification and persistent nature. Diverse pesticides directly or indirectly polluted air, water, soil and overall ecosystem which cause serious health hazard for living being. In the present manuscript, an attempt has been made to critically review the global usage of different pesticides and their major adverse impacts on ecosystem, which will provide guidance for a wide range of researchers in this area.

149 citations


Journal ArticleDOI
TL;DR: The estimated exports clearly indicate that particulate transport can contribute to human and environmental exposure to herbicide residues and Residue threshold values in soils are urgently needed to define potential risks for soil health and off site effects related to export by wind and water erosion.
Abstract: Approval for glyphosate-based herbicides in the European Union (EU) is under intense debate due to concern about their effects on the environment and human health. The occurrence of glyphosate residues in European water bodies is rather well documented whereas only few, fragmented and outdated information is available for European soils. We provide the first large-scale assessment of distribution (occurrence and concentrations) of glyphosate and its main metabolite aminomethylphosphonic acid (AMPA) in EU agricultural topsoils, and estimate their potential spreading by wind and water erosion. Glyphosate and/or AMPA were present in 45% of the topsoils collected, originating from eleven countries and six crop systems, with a maximum concentration of 2mgkg-1. Several glyphosate and AMPA hotspots were identified across the EU. Soil loss rates (obtained from recently derived European maps) were used to estimate the potential export of glyphosate and AMPA by wind and water erosion. The estimated exports, result of a conceptually simple model, clearly indicate that particulate transport can contribute to human and environmental exposure to herbicide residues. Residue threshold values in soils are urgently needed to define potential risks for soil health and off site effects related to export by wind and water erosion.

142 citations


Cites background or methods from "Trends in glyphosate herbicide use ..."

  • ...The half-life times of glyphosate and AMPA, also of importance in the respect of the amounts found in soils, are highly variable, ranging from a few days up to one or two years, depending on edaphic and environmental conditions, namely temperature and soil moisture (Bento et al., 2016; EFSA, 2013)....

    [...]

  • ...AMPA is more persistent than glyphosate, and the degradation of both compounds is slower at colder aminomethylphosphonic acid (AMPA) in agricultural topsoils of the env.2017.10.093 and dryer conditions (Bento et al., 2016)....

    [...]

  • ...…determined in the aliquots through HPLC-MS/MS using the same extraction and derivatisationmethod (see the Supporting Information for full details), chemicals, mobile phases, column characteristics and instrumentation conditions as described in Bento et al. (2016) and Yang et al. (2015)....

    [...]


References
More filters

Journal ArticleDOI
Abstract: One of the first of the specialized agencies of the United Nations to become active, the Food and Agriculture Organization has elicited interest beyond the specialized field of agricultural economists. Attempting as it does to solve one of the very basic problems of the world, that of an adequate food supply, the organization represents a significant and hopeful international attempt to create a world in which there may actually exist “freedom from want.” The objectives of FAO, as formally expressed in the preamble to the constitution, read as follows:“The nations accepting this constitution being determined to promote the common welfare by furthering separate and collective action on their part for the purpose of raising levels of nutrition and standards of living of the people under their jurisdiction, securing improvements in the efficiency of the production of all food and agricultural products, bettering the conditions of rural populations, and thus contributing toward an expanding world economy, hereby establish the Food and Agriculture Organization of the United Nations.”

3,743 citations


01 Jan 2012

2,445 citations


Journal ArticleDOI
TL;DR: The use of this virtually ideal herbicide is now being threatened by the evolution of glyphosate-resistant weeds, and adoption of resistance management practices will be required to maintain the benefits of glyphosate technologies for future generations.
Abstract: Since its commercial introduction in 1974, glyphosate [N-(phosphonomethyl)glycine] has become the dominant herbicide worldwide. There are several reasons for its success. Glyphosate is a highly effective broad-spectrum herbicide, yet it is very toxicologically and environmentally safe. Glyphosate translocates well, and its action is slow enough to take advantage of this. Glyphosate is the only herbicide that targets 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS), so there are no competing herbicide analogs or classes. Since glyphosate became a generic compound, its cost has dropped dramatically. Perhaps the most important aspect of the success of glyphosate has been the introduction of transgenic, glyphosate-resistant crops in 1996. Almost 90% of all transgenic crops grown worldwide are glyphosate resistant, and the adoption of these crops is increasing at a steady pace. Glyphosate/glyphosate-resistant crop weed management offers significant environmental and other benefits over the technologies that it replaces. The use of this virtually ideal herbicide is now being threatened by the evolution of glyphosate-resistant weeds. Adoption of resistance management practices will be required to maintain the benefits of glyphosate technologies for future generations. Copyright © 2008 Society of Chemical Industry

1,118 citations


"Trends in glyphosate herbicide use ..." refers background in this paper

  • ...John Franz, identified the herbicidal activity of glyphosate in 1970, and a formulated end-use product called Roundup was first sold commercially by Monsanto in 1974 [2]....

    [...]



Journal ArticleDOI
TL;DR: The aim of this review is to present and discuss the state of knowledge on sorption, degradation and leachability of glyphosate in soils, which suggests that glyphosate leaching seems mainly determined by soil structure and rainfall.
Abstract: The very wide use of glyphosate to control weeds in agricultural, silvicultural and urban areas throughout the world requires that special attention be paid to its possible transport from terrestrial to aquatic environments. The aim of this review is to present and discuss the state of knowledge on sorption, degradation and leachability of glyphosate in soils. Difficulties of drawing clear and unambiguous conclusions because of strong soil dependency and limited conclusive investigations are pointed out. Nevertheless, the risk of ground and surface water pollution by glyphosate seems limited because of sorption onto variable-charge soil minerals, e.g. aluminium and iron oxides, and because of microbial degradation. Although sorption and degradation are affected by many factors that might be expected to affect glyphosate mobility in soils, glyphosate leaching seems mainly determined by soil structure and rainfall. Limited leaching has been observed in non-structured sandy soils, while subsurface leaching to drainage systems was observed in a structured soil with preferential flow in macropores, but only when high rainfall followed glyphosate application. Glyphosate in drainage water runs into surface waters but not necessarily to groundwater because it may be sorbed and degraded in deeper soil layers before reaching the groundwater. Although the transport of glyphosate from land to water environments seems very limited, knowledge about subsurface leaching and surface runoff of glyphosate as well as the importance of this transport as related to ground and surface water quality is scarce.

512 citations


"Trends in glyphosate herbicide use ..." refers background in this paper

  • ...Rising use triggers new concerns Driven by the growing diversity of uses and dramatic increases in volumes applied, levels of glyphosate and its primary metabolite aminomethylphosphonic acid (AMPA) have been detected in the air [51], soil [52], and water [49, 53]....

    [...]