scispace - formally typeset
Search or ask a question

Showing papers on "Apoptosis published in 2017"



Journal ArticleDOI
TL;DR: This work shows that caspase-3 cleaves the GSDMD-related protein DFNA5 after Asp270 to generate a necroticDFNA5-N fragment that targets the plasma membrane to induce secondary necrosis/pyroptosis, and provides a molecular mechanism forsecondary necrosis.
Abstract: Apoptosis is a genetically regulated cell suicide programme mediated by activation of the effector caspases 3, 6 and 7. If apoptotic cells are not scavenged, they progress to a lytic and inflammatory phase called secondary necrosis. The mechanism by which this occurs is unknown. Here we show that caspase-3 cleaves the GSDMD-related protein DFNA5 after Asp270 to generate a necrotic DFNA5-N fragment that targets the plasma membrane to induce secondary necrosis/pyroptosis. Cells that express DFNA5 progress to secondary necrosis, when stimulated with apoptotic triggers such as etoposide or vesicular stomatitis virus infection, but disassemble into small apoptotic bodies when DFNA5 is deleted. Our findings identify DFNA5 as a central molecule that regulates apoptotic cell disassembly and progression to secondary necrosis, and provide a molecular mechanism for secondary necrosis. Because DFNA5-induced secondary necrosis and GSDMD-induced pyroptosis are dependent on caspase activation, we propose that they are forms of programmed necrosis.

837 citations


Journal ArticleDOI
TL;DR: The role of different cell death pathways in innate immune defence against bacterial and viral infection is discussed: apoptosis, necroptosis, pyroptosis and NETosis, which create complex signalling networks that cross-guard each other in the evolutionary 'arms race' with pathogens.
Abstract: Eukaryotic cells can die from physical trauma, which results in necrosis. Alternatively, they can die through programmed cell death upon the stimulation of specific signalling pathways. In this Review, we discuss the role of different cell death pathways in innate immune defence against bacterial and viral infection: apoptosis, necroptosis, pyroptosis and NETosis. We describe the interactions that interweave different programmed cell death pathways, which create complex signalling networks that cross-guard each other in the evolutionary 'arms race' with pathogens. Finally, we describe how the resulting cell corpses - apoptotic bodies, pore-induced intracellular traps (PITs) and neutrophil extracellular traps (NETs) - promote the clearance of infection.

617 citations


Journal ArticleDOI
TL;DR: The progress made in global identification of caspase substrates using proteomics is surveyed and the exciting new avenues these studies have opened for understanding the molecular logic of substrate cleavage in apoptotic and non-apoptotic processes are surveyed.
Abstract: Protease biology is intimately linked to the functional consequences of substrate cleavage events. Human caspases are a family of 12 fate-determining cysteine proteases that are best known for driving cell death, either apoptosis or pyroptosis. More recently, caspases have been shown to be involved in other cellular remodeling events as well including stem cell fate determination, spermatogenesis, and erythroid differentiation. Recent global proteomics methods enable characterization of the substrates that caspases cleave in live cells and cell extracts. The number of substrate targets identified for individual caspases can vary widely ranging from only a (few) dozen targets for caspases-4, -5, -9, and -14 to hundreds of targets for caspases-1, -2, -3, -6, -7, and -8. Proteomic studies characterizing the rates of target cleavage show that each caspase has a preferred substrate cohort that sometimes overlaps between caspases, but whose rates of cleavage vary over 500-fold within each group. Determining the functional consequences of discrete proteolytic events within the global substrate pool is a major challenge for the field. From the handful of individual targets that have been studied in detail, there are only a few so far that whose single cleavage event is capable of sparking apoptosis alone, such as cleavage of caspase-3/-7 and BIMEL, or for pyroptosis, gasdermin D. For the most part, it appears that cleavage events function cooperatively in the cell death process to generate a proteolytic synthetic lethal outcome. In contrast to apoptosis, far less is known about caspase biology in non-apoptotic cellular processes, such as cellular remodeling, including which caspases are activated, the mechanisms of their activation and deactivation, and the key substrate targets. Here we survey the progress made in global identification of caspase substrates using proteomics and the exciting new avenues these studies have opened for understanding the molecular logic of substrate cleavage in apoptotic and non-apoptotic processes.

507 citations


Journal ArticleDOI
TL;DR: Preclinical studies provide evidence that anti–PD-L1 therapy can sensitize tumors to antiangiogenic therapy and prolong its efficacy, and conversely, antiangIogenic therapy can improve anti-PD- L1 treatment specifically when it generates intratumoral HEVs that facilitate enhanced CTL infiltration, activity, and tumor cell destruction.
Abstract: Inhibitors of VEGF (vascular endothelial growth factor)/VEGFR2 (vascular endothelial growth factor receptor 2) are commonly used in the clinic, but their beneficial effects are only observed in a subset of patients and limited by induction of diverse relapse mechanisms. We describe the up-regulation of an adaptive immunosuppressive pathway during antiangiogenic therapy, by which PD-L1 (programmed cell death ligand 1), the ligand of the negative immune checkpoint regulator PD-1 (programmed cell death protein 1), is enhanced by interferon-γ–expressing T cells in distinct intratumoral cell types in refractory pancreatic, breast, and brain tumor mouse models. Successful treatment with a combination of anti-VEGFR2 and anti–PD-L1 antibodies induced high endothelial venules (HEVs) in PyMT (polyoma middle T oncoprotein) breast cancer and RT2-PNET (Rip1-Tag2 pancreatic neuroendocrine tumors), but not in glioblastoma (GBM). These HEVs promoted lymphocyte infiltration and activity through activation of lymphotoxin β receptor (LTβR) signaling. Further activation of LTβR signaling in tumor vessels using an agonistic antibody enhanced HEV formation, immunity, and subsequent apoptosis and necrosis in pancreatic and mammary tumors. Finally, LTβR agonists induced HEVs in recalcitrant GBM, enhanced cytotoxic T cell (CTL) activity, and thereby sensitized tumors to antiangiogenic/anti–PD-L1 therapy. Together, our preclinical studies provide evidence that anti–PD-L1 therapy can sensitize tumors to antiangiogenic therapy and prolong its efficacy, and conversely, antiangiogenic therapy can improve anti–PD-L1 treatment specifically when it generates intratumoral HEVs that facilitate enhanced CTL infiltration, activity, and tumor cell destruction.

492 citations


Journal ArticleDOI
TL;DR: The role of caspase‐8 in the initiation of extrinsic apoptosis execution and the mechanism by which casp enzyme‐8 inhibits necroptosis are described.
Abstract: Roles for cell death in development, homeostasis, and the control of infections and cancer have long been recognized. Although excessive cell damage results in passive necrosis, cells can be triggered to engage molecular programs that result in cell death. Such triggers include cellular stress, oncogenic signals that engage tumor suppressor mechanisms, pathogen insults, and immune mechanisms. The best-known forms of programmed cell death are apoptosis and a recently recognized regulated necrosis termed necroptosis. Of the two best understood pathways of apoptosis, the extrinsic and intrinsic (mitochondrial) pathways, the former is induced by the ligation of death receptors, a subset of the TNF receptor (TNFR) superfamily. Ligation of these death receptors can also induce necroptosis. The extrinsic apoptosis and necroptosis pathways regulate each other and their balance determines whether cells live. Integral in the regulation and initiation of death receptor-mediated activation of programmed cell death is the aspartate-specific cysteine protease (caspase)-8. This review describes the role of caspase-8 in the initiation of extrinsic apoptosis execution and the mechanism by which caspase-8 inhibits necroptosis. The importance of caspase-8 in the development and homeostasis and the way that dysfunctional caspase-8 may contribute to the development of malignancies in mice and humans are also explored.

450 citations


Journal ArticleDOI
TL;DR: The data support a model wherein tumor Treg cells sustain and amplify their suppressor capacity through inadvertent death via oxidative stress and highlights the oxidative pathway as a metabolic checkpoint that controls Treg cell behavior and affects the efficacy of therapeutics targeting cancer checkpoints.
Abstract: Live regulatory T cells (Treg cells) suppress antitumor immunity, but how Treg cells behave in the metabolically abnormal tumor microenvironment remains unknown. Here we show that tumor Treg cells undergo apoptosis, and such apoptotic Treg cells abolish spontaneous and PD-L1-blockade-mediated antitumor T cell immunity. Biochemical and functional analyses show that adenosine, but not typical suppressive factors such as PD-L1, CTLA-4, TGF-β, IL-35, and IL-10, contributes to apoptotic Treg-cell-mediated immunosuppression. Mechanistically, apoptotic Treg cells release and convert a large amount of ATP to adenosine via CD39 and CD73, and mediate immunosuppression via the adenosine and A2A pathways. Apoptosis in Treg cells is attributed to their weak NRF2-associated antioxidant system and high vulnerability to free oxygen species in the tumor microenvironment. Thus, the data support a model wherein tumor Treg cells sustain and amplify their suppressor capacity through inadvertent death via oxidative stress. This work highlights the oxidative pathway as a metabolic checkpoint that controls Treg cell behavior and affects the efficacy of therapeutics targeting cancer checkpoints.

446 citations


Journal ArticleDOI
TL;DR: Bidirectional crosstalk between apoptosis and pyroptosis in monocytes and macrophages is revealed, further illuminating the complex interplay between cell death pathways in the innate immune system.

378 citations


Journal ArticleDOI
Haitao Yu1, Pengyi Guo1, Xiaozai Xie1, Yi Wang1, Gang Chen1 
TL;DR: The induction mechanisms and regulatory pathways of ferroptosis, a newly discovered type of cell death that differs from traditional apoptosis and necrosis and results from iron‐dependent lipid peroxide accumulation, are summarized and their roles in human tumourous diseases are clarified.
Abstract: Ferroptosis is a newly discovered type of cell death that differs from traditional apoptosis and necrosis and results from iron-dependent lipid peroxide accumulation. Ferroptotic cell death is characterized by cytological changes, including cell volume shrinkage and increased mitochondrial membrane density. Ferroptosis can be induced by two classes of small-molecule substances known as class 1 (system Xc- inhibitors) and class 2 ferroptosis inducers [glutathione peroxidase 4 (GPx4) inhibitors]. In addition to these small-molecule substances, a number of drugs (e.g. sorafenib, artemisinin and its derivatives) can induce ferroptosis. Various factors, such as the mevalonate (MVA) and sulphur-transfer pathways, play pivotal roles in the regulation of ferroptosis. Ferroptosis plays an unneglectable role in regulating the growth and proliferation of some types of tumour cells, such as lymphocytoma, ductal cell cancer of the pancreas, renal cell carcinoma (RCC) and hepatocellular carcinoma (HCC). Here, we will first introduce the discovery of and research pertaining to ferroptosis; then summarize the induction mechanisms and regulatory pathways of ferroptosis; and finally, further elucidate the roles of ferroptosis in human tumourous diseases.

377 citations


Journal ArticleDOI
09 Jun 2017-Science
TL;DR: Tissue repair is a subset of a broad repertoire of interleukin-4 (IL-4)– and IL-13–dependent host responses during helminth infection, and it is shown that IL-4 orIL-13 alone was not sufficient, but IL-2 or IL-3 together with apoptotic cells induced the tissue repair program in macrophages.
Abstract: Tissue repair is a subset of a broad repertoire of interleukin-4 (IL-4)– and IL-13–dependent host responses during helminth infection. Here we show that IL-4 or IL-13 alone was not sufficient, but IL-4 or IL-13 together with apoptotic cells induced the tissue repair program in macrophages. Genetic ablation of sensors of apoptotic cells impaired the proliferation of tissue-resident macrophages and the induction of anti-inflammatory and tissue repair genes in the lungs after helminth infection or in the gut after induction of colitis. By contrast, the recognition of apoptotic cells was dispensable for cytokine-dependent induction of pattern recognition receptor, cell adhesion, or chemotaxis genes in macrophages. Detection of apoptotic cells can therefore spatially compartmentalize or prevent premature or ectopic activity of pleiotropic, soluble cytokines such as IL-4 or IL-13.

369 citations


Journal ArticleDOI
01 Mar 2017-Stroke
TL;DR: It is proposed that ferroptosis or necroptotic signaling induced by lysed blood is sufficient to reach a threshold of death that leads to neuronal necrosis and that inhibition of either of these pathways can bring cells below that threshold to survival.
Abstract: Background and Purpose—Intracerebral hemorrhage leads to disability or death with few established treatments. Adverse outcomes after intracerebral hemorrhage result from irreversible damage to neur...

Journal ArticleDOI
TL;DR: In in vivo experiments, mice bearing MCF-7 and CT-26 tumors exhibited a significant reduction in tumor volume in the quercetin-treated group as compared to the control group (P<0.001).
Abstract: The present study focused on the elucidation of the putative anticancer potential of quercetin. The anticancer activity of quercetin at 10, 20, 40, 80 and 120 µM was assessed in vitro by MMT assay in 9 tumor cell lines (colon carcinoma CT‑26 cells, prostate adenocarcinoma LNCaP cells, human prostate PC3 cells, pheocromocytoma PC12 cells, estrogen receptor‑positive breast cancer MCF‑7 cells, acute lymphoblastic leukemia MOLT‑4 T‑cells, human myeloma U266B1 cells, human lymphoid Raji cells and ovarian cancer CHO cells). Quercetin was found to induce the apoptosis of all the tested cancer cell lines at the utilized concentrations. Moreover, quercetin significantly induced the apoptosis of the CT‑26, LNCaP, MOLT‑4 and Raji cell lines, as compared to control group (P<0.001), as demonstrated by Annexin V/PI staining. In in vivo experiments, mice bearing MCF‑7 and CT‑26 tumors exhibited a significant reduction in tumor volume in the quercetin‑treated group as compared to the control group (P<0.001). Taken together, quercetin, a naturally occurring compound, exhibits anticancer properties both in vivo and in vitro.

Journal ArticleDOI
TL;DR: This Timeline article highlights the key events that have demonstrated the importance of programmed cell death processes, including apoptosis and programmed necrosis, in the immune system.
Abstract: More than 50 years ago, cells were observed to die during insect development via a process that was named 'programmed cell death'. Later, a similar cell death process was found to occur in humans, and the process was renamed 'apoptosis'. In the 1990s, a number of apoptosis-regulating molecules were identified, and apoptosis was found to have essential roles in the immune system. In this Timeline article, we highlight the key events that have demonstrated the importance of programmed cell death processes, including apoptosis and programmed necrosis, in the immune system.

Journal ArticleDOI
14 Jun 2017-Nature
TL;DR: This work discovers that BAP1 localizes at the endoplasmic reticulum, and binds, deubiquitylates, and stabilizes type 3 inositol-1,4,5-trisphosphate receptor (IP3R3), modulating calcium release into the cytosol and mitochondria, promoting apoptosis.
Abstract: BRCA1-associated protein 1 (BAP1) is a potent tumour suppressor gene that modulates environmental carcinogenesis. All carriers of inherited heterozygous germline BAP1-inactivating mutations (BAP1+/-) developed one and often several BAP1-/- malignancies in their lifetime, mostly malignant mesothelioma, uveal melanoma, and so on. Moreover, BAP1-acquired biallelic mutations are frequent in human cancers. BAP1 tumour suppressor activity has been attributed to its nuclear localization, where it helps to maintain genome integrity. The possible activity of BAP1 in the cytoplasm is unknown. Cells with reduced levels of BAP1 exhibit chromosomal abnormalities and decreased DNA repair by homologous recombination, indicating that BAP1 dosage is critical. Cells with extensive DNA damage should die and not grow into malignancies. Here we discover that BAP1 localizes at the endoplasmic reticulum. Here, it binds, deubiquitylates, and stabilizes type 3 inositol-1,4,5-trisphosphate receptor (IP3R3), modulating calcium (Ca2+) release from the endoplasmic reticulum into the cytosol and mitochondria, promoting apoptosis. Reduced levels of BAP1 in BAP1+/- carriers cause reduction both of IP3R3 levels and of Ca2+ flux, preventing BAP1+/- cells that accumulate DNA damage from executing apoptosis. A higher fraction of cells exposed to either ionizing or ultraviolet radiation, or to asbestos, survive genotoxic stress, resulting in a higher rate of cellular transformation. We propose that the high incidence of cancers in BAP1+/- carriers results from the combined reduced nuclear and cytoplasmic activities of BAP1. Our data provide a mechanistic rationale for the powerful ability of BAP1 to regulate gene-environment interaction in human carcinogenesis.

Journal ArticleDOI
TL;DR: The experimental results show that the CuO NPs can induce apoptosis and suppress the proliferation of HeLa cells.

Journal ArticleDOI
TL;DR: This review summarizes the current understanding of the role of JNK in programmed cell death and its impact on cancer growth, progression, and therapy.
Abstract: Jun N-terminal kinases or JNKs have been shown to be involved in a wide array of signaling events underlying tumorigenesis and tumor progression. Through its interaction with a diverse set of signaling proteins and adaptors, JNKs regulate cell proliferation, invasive migration, therapy resistance, and programmed cell death. JNKs have been shown to play a role in apoptotic as well as non-apoptotic programmed cell death mechanisms including those of necroptosis, ferroptosis, pyroptosis, and autophagy. Most of the tumorigenic regulatory functions of JNKs can be related to their ability to module cell death via these programmed cell death mechanisms. JNKs stimulate or inhibit cell death in a context-dependent manner by stimulating the expression of specific genes as well as by modulating the activities of pro- and anti-apoptotic proteins through distinct phosphorylation events. This review summarizes our current understanding of the role of JNK in programmed cell death and its impact on cancer growth, progression, and therapy.

Journal ArticleDOI
TL;DR: Investigation of doxorubicin-induced cytotoxicity in human induced pluripotent stem cells-derived cardiomyocytes shows that the induction of death receptors in carduomyocytes is likely a critical mechanism by which doxorbicin causes cardiotoxicity.
Abstract: Doxorubicin is a highly effective anticancer agent but causes cardiotoxicity in many patients. The mechanisms of doxorubicin-induced cardiotoxicity remain incompletely understood. Here we investigated doxorubicin-induced cytotoxicity in human induced pluripotent stem cells-derived cardiomyocytes (iPS-CMs). We found that doxorubicin and related anthracycline agents (e.g., daunorubicin, idarubicin, and epirubicin) significantly upregulated the expression of death receptors (DRs) (TNFR1, Fas, DR4 and DR5) in iPS-derived cardiomyocytes at both protein and mRNA levels. The resulting iPS-CMs cells underwent spontaneous apoptosis which was further enhanced by physiologically relevant death ligands including TNF-related apoptosis inducing ligand (TRAIL). Furthermore, TRAIL potentiated doxorubicin-induced decrease in beating rate and amplitude of iPS-derived cardiomyocytes. These data demonstrate that the induction of death receptors in cardiomyocytes is likely a critical mechanism by which doxorubicin causes cardiotoxicity.

Journal ArticleDOI
TL;DR: In vivo exosome injections in rats that underwent I/R injury significantly reduced apoptosis and the myocardial infarct size and upregulated myocardian LC3B expression as well as improved heart function.
Abstract: Background/Aims: Reperfusion after an ischaemic insult might cause infarct extension. Mesenchymal stem cell (MSC)-derived exosomes could attenuate myocardial remodelling in animal models of myocardial ischaemia reperfusion injury (MIRI), and the present study aimed to explore the related mechanisms. Methods: In vitro, rat H9C2 cardiomyocytes (H9C2s) were exposed to H2O2. Cell viability was detected by the CCK-8 assay, apoptosis was detected by Annexin V-PE/7-AAD staining, ROS production was detected by fluorescence microscopy and flow cytometry, and apoptosis-related proteins and signalling pathway-related proteins were detected by western blot analysis. Autophagic flux was measured using the tandem fluorescent mRFG-GFP-LC3 assay. MSC-derived exosomes were extracted using the total exosome isolation reagent. Apoptosis, myocardial infarction size, heart function and myocardial LC3B expression were examined in an in vivo I/R model by the TUNEL assay, TTC/Evan blue staining, echocardiography and immunohistochemicalstaining, respectively. Results: In vitro, H2O2 dose-dependently increased ROS production and cell apoptosis in H9C2s and blocked autophagic flux after 3 h of exposure; autophagy gradually decreased thereafter, and the lowest level was detected at 12 h after exposure. MSC-derived exosomes reduced H2O2-induced ROS production and cell apoptosis and enhanced autophagy at 12 h after exposure. In H9C2 cells exposed to H2O2 for 12 h, treatment with exosomes enhanced autophagy via the AMPK/mTOR and Akt/mTOR pathways. Likewise, in vivo exosome injections in rats that underwent I/R injury significantly reduced apoptosis and the myocardial infarct size and upregulated myocardial LC3B expression as well as improved heart function. Conclusions: Our results indicate that MSC-derived exosomes could reduce MIRI by inducing cardiomyocyte autophagy via AMPK/mTOR and Akt/mTOR pathways.

Journal ArticleDOI
TL;DR: This study confirms the promotive effect of Ripk3 on mitochondria-mediated apoptosis via inhibition of FUNDC1-dependent mitophagy in cardiac IRI.
Abstract: Ripk3-required necroptosis and mitochondria-mediated apoptosis are the predominant types of cell death that largely account for the development of cardiac ischemia reperfusion injury (IRI). Here, we explored the effect of Ripk3 on mitochondrial apoptosis. Compared with wild-type mice, the infarcted area in Ripk3-deficient (Ripk3-/-) mice had a relatively low abundance of apoptotic cells. Moreover, the loss of Ripk3 protected the mitochondria against IRI and inhibited caspase9 apoptotic pathways. These protective effects of Ripk3 deficiency were relied on mitophagy activation. However, inhibition of mitophagy under Ripk3 deficiency enhanced cardiomyocyte and endothelia apoptosis, augmented infarcted area and induced microvascular dysfunction. Furthermore, ischemia activated mitophagy by modifying FUNDC1 dephosphorylation, which substantively engulfed mitochondria debris and cytochrome-c, thus blocking apoptosis signal. However, reperfusion injury elevated the expression of Ripk3 which disrupted FUNDC1 activation and abated mitophagy, increasing the likelihood of apoptosis. In summary, this study confirms the promotive effect of Ripk3 on mitochondria-mediated apoptosis via inhibition of FUNDC1-dependent mitophagy in cardiac IRI. These findings provide new insight into the roles of Ripk3-related necroptosis, mitochondria-mediated apoptosis and FUNDC1-required mitophagy in cardiac IRI.

Journal ArticleDOI
TL;DR: It is found that erastin-induced ferroptosis in neuronal cells was accompanied by BID transactivation to mitochondria, loss of mitochondrial membrane potential, enhanced mitochondrial fragmentation and reduced ATP levels, which are hallmarks of mitochondrial demise.
Abstract: Ferroptosis has been defined as an oxidative and iron-dependent pathway of regulated cell death that is distinct from caspase-dependent apoptosis and established pathways of death receptor-mediated regulated necrosis. While emerging evidence linked features of ferroptosis induced e.g. by erastin-mediated inhibition of the Xc- system or inhibition of glutathione peroxidase 4 (Gpx4) to an increasing number of oxidative cell death paradigms in cancer cells, neurons or kidney cells, the biochemical pathways of oxidative cell death remained largely unclear. In particular, the role of mitochondrial damage in paradigms of ferroptosis needs further investigation. In the present study, we find that erastin-induced ferroptosis in neuronal cells was accompanied by BID transactivation to mitochondria, loss of mitochondrial membrane potential, enhanced mitochondrial fragmentation and reduced ATP levels. These hallmarks of mitochondrial demise are also established features of oxytosis, a paradigm of cell death induced by Xc- inhibition by millimolar concentrations of glutamate. Bid knockout using CRISPR/Cas9 approaches preserved mitochondrial integrity and function, and mediated neuroprotective effects against both, ferroptosis and oxytosis. Furthermore, the BID-inhibitor BI-6c9 inhibited erastin-induced ferroptosis, and, in turn, the ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 prevented mitochondrial dysfunction and cell death in the paradigm of oxytosis. These findings show that mitochondrial transactivation of BID links ferroptosis to mitochondrial damage as the final execution step in this paradigm of oxidative cell death.

Journal ArticleDOI
TL;DR: The current review summarizes the latest findings regarding structure-function relationship of Apaf-1 as well as its modifiers and describes the mechanism of oligomerization and caspase-9 activation in the apoptosome.

Journal ArticleDOI
TL;DR: It is proposed that careful induction of HSPs in HID and cancer, especially prior to inflammation, will provide good therapeutics in the management and treatment of HIDs and cancer.
Abstract: Heat shock proteins (HSPs) play cytoprotective activities under pathological conditions through the initiation of protein folding, repair, refolding of misfolded peptides, and possible degradation of irreparable proteins. Excessive apoptosis, resulting from increased reactive oxygen species (ROS) cellular levels and subsequent amplified inflammatory reactions, is well known in the pathogenesis and progression of several human inflammatory diseases (HIDs) and cancer. Under normal physiological conditions, ROS levels and inflammatory reactions are kept in check for the cellular benefits of fighting off infectious agents through antioxidant mechanisms; however, this balance can be disrupted under pathological conditions, thus leading to oxidative stress and massive cellular destruction. Therefore, it becomes apparent that the interplay between oxidant-apoptosis-inflammation is critical in the dysfunction of the antioxidant system and, most importantly, in the progression of HIDs. Hence, there is a need to maintain careful balance between the oxidant-antioxidant inflammatory status in the human body. HSPs are known to modulate the effects of inflammation cascades leading to the endogenous generation of ROS and intrinsic apoptosis through inhibition of pro-inflammatory factors, thereby playing crucial roles in the pathogenesis of HIDs and cancer. We propose that careful induction of HSPs in HIDs and cancer, especially prior to inflammation, will provide good therapeutics in the management and treatment of HIDs and cancer.

Journal ArticleDOI
TL;DR: Results indicate that PRP-Exos have the capability to prevent GC-induced apoptosis in a rat model of ONFH by promoting Bcl-2 expression via the Akt/Bad/B cl-2 signal pathway under ER stress.
Abstract: An excess of glucocorticoids (GCs) is reported to be one of the most common causes of osteonecrosis of the femoral head (ONFH). In addition, GCs can induce bone cell apoptosis through modulating endoplasmic reticulum (ER) stress. Among the three main signal pathways in ER stress, the PERK (protein kinase RNA-like ER kinase)/CHOP (CCAAT-enhancer-binding protein homologous protein) pathway has been considered to be closely associated with apoptosis. Platelet-rich plasma (PRP) has been referred to as a concentration of growth factors and the exosomes derived from PRP (PRP-Exos) have a similar effect to their parent material. The enriched growth factors can be encapsulated into PRP-Exos and activate Akt and Erk pathways to promote angiogenesis. Activation of the Akt pathway may promote the expression of anti-apoptotic proteins like Bcl-2, while CHOP can inhibit B-cell lymphoma 2 (Bcl-2) expression to increase the level of cleaved caspase-3 and lead to cell death. Consequently, we hypothesized that PRP-Exos prevent apoptosis induced by glucocorticoid-associated ER stress in rat ONFH via the Akt/Bad/Bcl-2 signal pathway. To verify this hypothesis, a dexamethasone (DEX)-treated in vitro cell model and methylprednisolone (MPS)-treated in vivo rat model were adopted. Characterization of PRP-Exos, and effects of PRP-Exos on proliferation, apoptosis, angiogenesis, and osteogenesis of cells treated with GCs in vitro and in vivo were examined. Furthermore, the mechanism by which PRP-Exos rescue the GC-induced apoptosis through the Akt/Bad/Bcl-2 pathway was also investigated. The results indicate that PRP-Exos have the capability to prevent GC-induced apoptosis in a rat model of ONFH by promoting Bcl-2 expression via the Akt/Bad/Bcl-2 signal pathway under ER stress.

Journal ArticleDOI
TL;DR: Encouraging results suggest that Au@CB has a significant potential for the treatment of colon rectal cancer.

Journal ArticleDOI
TL;DR: Conventionally fractionated radiotherapy in combination with anti–PD‐L1 antibody shows a synergistic antitumor immunity in NSCLC and PD‐L 1 expression may be a significant clinical predictive factor for treatment response to radiotherapeutic treatment inNSCLC.

Journal ArticleDOI
TL;DR: It is demonstrated that moderate ROS levels can promote autophagy to recycle damaged cellular constituents and maintain cellular homeostasis, while the induction of Autophagy can inhibit apoptosis and protect the HCs by suppressing ROS accumulation after aminoglycoside injury.
Abstract: Aminoglycosides are toxic to sensory hair cells (HCs). Macroautophagy/autophagy is an essential and highly conserved self-digestion pathway that plays important roles in the maintenance of cellular function and viability under stress. However, the role of autophagy in aminoglycoside-induced HC injury is unknown. Here, we first found that autophagy activity was significantly increased, including enhanced autophagosome-lysosome fusion, in both cochlear HCs and HEI-OC-1 cells after neomycin or gentamicin injury, suggesting that autophagy might be correlated with aminoglycoside-induced cell death. We then used rapamycin, an autophagy activator, to increase the autophagy activity and found that the ROS levels, apoptosis, and cell death were significantly decreased after neomycin or gentamicin injury. In contrast, treatment with the autophagy inhibitor 3-methyladenine (3-MA) or knockdown of autophagy-related (ATG) proteins resulted in reduced autophagy activity and significantly increased ROS levels, ap...

Journal ArticleDOI
14 Jun 2017-Nature
TL;DR: It is identified that the F-box protein FBXL2 binds IP3R3 and targets it for ubiquitin-, p97- and proteasome-mediated degradation to limit Ca2+ influx into mitochondria and provide proof-of-principle that inhibiting IP3 R3 degradation in PTEN-deregulated cancers represents a valid therapeutic strategy.
Abstract: In response to environmental cues that promote IP3 (inositol 1,4,5-trisphosphate) generation, IP3 receptors (IP3Rs) located on the endoplasmic reticulum allow the 'quasisynaptical' feeding of calcium to the mitochondria to promote oxidative phosphorylation. However, persistent Ca2+ release results in mitochondrial Ca2+ overload and consequent apoptosis. Among the three mammalian IP3Rs, IP3R3 appears to be the major player in Ca2+-dependent apoptosis. Here we show that the F-box protein FBXL2 (the receptor subunit of one of 69 human SCF (SKP1, CUL1, F-box protein) ubiquitin ligase complexes) binds IP3R3 and targets it for ubiquitin-, p97- and proteasome-mediated degradation to limit Ca2+ influx into mitochondria. FBXL2-knockdown cells and FBXL2-insensitive IP3R3 mutant knock-in clones display increased cytosolic Ca2+ release from the endoplasmic reticulum and sensitization to Ca2+-dependent apoptotic stimuli. The phosphatase and tensin homologue (PTEN) gene is frequently mutated or lost in human tumours and syndromes that predispose individuals to cancer. We found that PTEN competes with FBXL2 for IP3R3 binding, and the FBXL2-dependent degradation of IP3R3 is accelerated in Pten-/- mouse embryonic fibroblasts and PTEN-null cancer cells. Reconstitution of PTEN-null cells with either wild-type PTEN or a catalytically dead mutant stabilizes IP3R3 and induces persistent Ca2+ mobilization and apoptosis. IP3R3 and PTEN protein levels directly correlate in human prostate cancer. Both in cell culture and xenograft models, a non-degradable IP3R3 mutant sensitizes tumour cells with low or no PTEN expression to photodynamic therapy, which is based on the ability of photosensitizer drugs to cause Ca2+-dependent cytotoxicity after irradiation with visible light. Similarly, disruption of FBXL2 localization with GGTi-2418, a geranylgeranyl transferase inhibitor, sensitizes xenotransplanted tumours to photodynamic therapy. In summary, we identify a novel molecular mechanism that limits mitochondrial Ca2+ overload to prevent cell death. Notably, we provide proof-of-principle that inhibiting IP3R3 degradation in PTEN-deregulated cancers represents a valid therapeutic strategy.


Journal ArticleDOI
TL;DR: It is shown that PKM2 translocates to mitochondria under oxidative stress and phosphorylates Bcl2 and inhibits apoptosis directly, highlighting the essential role of PKM 2 in ROS adaptation of cancer cells, and implicate HSP90-PKM2-Bcl2 axis as a potential target for therapeutic intervention in glioblastoma.
Abstract: Pyruvate kinase M2 isoform (PKM2) catalyzes the last step of glycolysis and plays an important role in tumor cell proliferation. Recent studies have reported that PKM2 also regulates apoptosis. However, the mechanisms underlying such a role of PKM2 remain elusive. Here we show that PKM2 translocates to mitochondria under oxidative stress. In the mitochondria, PKM2 interacts with and phosphorylates Bcl2 at threonine (T) 69. This phosphorylation prevents the binding of Cul3-based E3 ligase to Bcl2 and subsequent degradation of Bcl2. A chaperone protein, HSP90α1, is required for this function of PKM2. HSP90α1's ATPase activity launches a conformational change of PKM2 and facilitates interaction between PKM2 and Bcl2. Replacement of wild-type Bcl2 with phosphorylation-deficient Bcl2 T69A mutant sensitizes glioma cells to oxidative stress-induced apoptosis and impairs brain tumor formation in an orthotopic xenograft model. Notably, a peptide that is composed of the amino acid residues from 389 to 405 of PKM2, through which PKM2 binds to Bcl2, disrupts PKM2-Bcl2 interaction, promotes Bcl2 degradation and impairs brain tumor growth. In addition, levels of Bcl2 T69 phosphorylation, conformation-altered PKM2 and Bcl2 protein correlate with one another in specimens of human glioblastoma patients. Moreover, levels of Bcl2 T69 phosphorylation and conformation-altered PKM2 correlate with both grades and prognosis of glioma malignancy. Our findings uncover a novel mechanism through which mitochondrial PKM2 phosphorylates Bcl2 and inhibits apoptosis directly, highlight the essential role of PKM2 in ROS adaptation of cancer cells, and implicate HSP90-PKM2-Bcl2 axis as a potential target for therapeutic intervention in glioblastoma.

Journal ArticleDOI
TL;DR: It is shown that the CDK inhibitor p21 (CDKN1A) maintains the viability of DNA damage‐induced senescent cells, defining a novel pathway that regulates senescent cell viability and fibrosis.
Abstract: Cellular senescence is a permanent state of cell cycle arrest that protects the organism from tumorigenesis and regulates tissue integrity upon damage and during tissue remodeling. However, accumulation of senescent cells in tissues during aging contributes to age‐related pathologies. A deeper understanding of the mechanisms regulating the viability of senescent cells is therefore required. Here, we show that the CDK inhibitor p21 (CDKN1A) maintains the viability of DNA damage‐induced senescent cells. Upon p21 knockdown, senescent cells acquired multiple DNA lesions that activated ataxia telangiectasia mutated (ATM) and nuclear factor (NF)‐κB kinase, leading to decreased cell survival. NF‐κB activation induced TNF‐α secretion and JNK activation to mediate death of senescent cells in a caspase‐ and JNK‐dependent manner. Notably, p21 knockout in mice eliminated liver senescent stellate cells and alleviated liver fibrosis and collagen production. These findings define a novel pathway that regulates senescent cell viability and fibrosis.