scispace - formally typeset
Search or ask a question

Showing papers on "Epiblast published in 2017"


Journal ArticleDOI
TL;DR: This study systematically charts transcriptional noise and uncovers molecular processes associated with early lineage decisions that are related to reactivation and subsequent inactivation of the X chromosome.

261 citations


Journal ArticleDOI
TL;DR: The initial transition process for extinction of mouse embryonic stem cell identity upon differentiation immediately follows collapse of the naïve pluripotency transcription factor circuitry and precedes upregulation of lineage-specific factors.
Abstract: Mouse embryonic stem (ES) cells are locked into self-renewal by shielding from inductive cues. Release from this ground state in minimal conditions offers a system for delineating developmental progression from naive pluripotency. Here, we examine the initial transition process. The ES cell population behaves asynchronously. We therefore exploited a short-half-life Rex1::GFP reporter to isolate cells either side of exit from naive status. Extinction of ES cell identity in single cells is acute. It occurs only after near-complete elimination of naive pluripotency factors, but precedes appearance of lineage specification markers. Cells newly departed from the ES cell state display features of early post-implantation epiblast and are distinct from primed epiblast. They also exhibit a genome-wide increase in DNA methylation, intermediate between early and late epiblast. These findings are consistent with the proposition that naive cells transition to a distinct formative phase of pluripotency preparatory to lineage priming.

230 citations


Journal ArticleDOI
07 Jun 2017-Nature
TL;DR: Porcine PGCs originate from the posterior pre-primitive-streak competent epiblast by sequential upregulation of SOX17 and BLIMP1 in response to WNT and BMP signalling, and this model together with human and monkey in vitro models simulating peri-gastrulation development is used to show the conserved principles of epiblasts development for competency for primordial germ cell fate.
Abstract: Mouse embryos develop in an elongated cylinder, whereas human embryos initially form in a flat disc. The flat disc morphology is also observed in pig and monkey embryos, making them more suitable for studying some aspects of development, such as the formation of primordial germ cells (PGCs), the precursors of sperm and eggs. M. Azim Surani and colleagues adopt three approaches to develop useful models of human PGCs. They trace the emergence of PGCs and show that they originate from the posterior epiblast and in response to similar signals and epigenetic changes as seen in human development. Using an in vitro model of PGC development from human and monkey pluripotent stem cells, they demonstrate that a balanced SOX17BLIMP1 gene dosage is necessary and sufficient for specification of human PGCs from cells in a differentiating embryoid that are at an equivalent stage to the posterior epiblast.

192 citations


Journal ArticleDOI
29 Nov 2017-Nature
TL;DR: It is shown that exit from an unrestricted naive pluripotent state is required for epiblast epithelialization and generation of the pro-amniotic cavity in mouse embryos and the relevance of transitions between these states during development of the mammalian embryo is shown.
Abstract: The foundations of mammalian development lie in a cluster of embryonic epiblast stem cells. In response to extracellular matrix signalling, these cells undergo epithelialization and create an apical surface in contact with a cavity, a fundamental event for all subsequent development. Concomitantly, epiblast cells transit through distinct pluripotent states, before lineage commitment at gastrulation. These pluripotent states have been characterized at the molecular level, but their biological importance remains unclear. Here we show that exit from an unrestricted naive pluripotent state is required for epiblast epithelialization and generation of the pro-amniotic cavity in mouse embryos. Embryonic stem cells locked in the naive state are able to initiate polarization but fail to undergo lumenogenesis. Mechanistically, exit from naive pluripotency activates an Oct4-governed transcriptional program that results in expression of glycosylated sialomucin proteins and the vesicle tethering and fusion events of lumenogenesis. Similarly, exit of epiblasts from naive pluripotency in cultured human post-implantation embryos triggers amniotic cavity formation and developmental progression. Our results add tissue-level architecture as a new criterion for the characterization of different pluripotent states, and show the relevance of transitions between these states during development of the mammalian embryo.

174 citations


Journal ArticleDOI
TL;DR: The continuum of pluripotency existing within the mammalian embryo is discussed, using the mouse as a model, and the cognate stem cell types that can be derived and propagated in vitro are discussed.
Abstract: Pluripotency defines the propensity of a cell to differentiate into, and generate, all somatic, as well as germ cells. The epiblast of the early mammalian embryo is the founder population of all germ layer derivatives and thus represents the bona fide in vivo pluripotent cell population. The so-called pluripotent state spans several days of development and is lost during gastrulation as epiblast cells make fate decisions towards a mesoderm, endoderm or ectoderm identity. It is now widely recognized that the features of the pluripotent population evolve as development proceeds from the pre- to post-implantation period, marked by distinct transcriptional and epigenetic signatures. During this period of time epiblast cells mature through a continuum of pluripotent states with unique properties. Aspects of this pluripotent continuum can be captured in vitro in the form of stable pluripotent stem cell types. In this review we discuss the continuum of pluripotency existing within the mammalian embryo, using the mouse as a model, and the cognate stem cell types that can be derived and propagated in vitro. Furthermore, we speculate on embryonic stage-specific characteristics that could be utilized to identify novel, developmentally relevant, pluripotent states.

136 citations


Journal ArticleDOI
20 Sep 2017-Nature
TL;DR: Global remethylation from the mouse preimplantation embryo into the early epiblast and extraembryonic ectoderm is analysed and it is shown that these two states acquire highly divergent genomic distributions with substantial disruption of bimodal, CpG density-dependent methylation in the placental progenitor.
Abstract: In mammals, the canonical somatic DNA methylation landscape is established upon specification of the embryo proper and subsequently disrupted within many cancer types. However, the underlying mechanisms that direct this genome-scale transformation remain elusive, with no clear model for its systematic acquisition or potential developmental utility. Here, we analysed global remethylation from the mouse preimplantation embryo into the early epiblast and extraembryonic ectoderm. We show that these two states acquire highly divergent genomic distributions with substantial disruption of bimodal, CpG density-dependent methylation in the placental progenitor. The extraembryonic epigenome includes specific de novo methylation at hundreds of embryonically protected CpG island promoters, particularly those that are associated with key developmental regulators and are orthologously methylated across most human cancer types. Our data suggest that the evolutionary innovation of extraembryonic tissues may have required co-option of DNA methylation-based suppression as an alternative to regulation by Polycomb-group proteins, which coordinate embryonic germ-layer formation in response to extraembryonic cues. Moreover, we establish that this decision is made deterministically, downstream of promiscuously used-and frequently oncogenic-signalling pathways, via a novel combination of epigenetic cofactors. Methylation of developmental gene promoters during tumorigenesis may therefore reflect the misappropriation of an innate trajectory and the spontaneous reacquisition of a latent, developmentally encoded epigenetic landscape.

135 citations


Journal ArticleDOI
TL;DR: Mechanisms through which FGF signaling regulates inner cell mass lineage restriction and cell commitment during preimplantation development are identified.

135 citations


Journal ArticleDOI
TL;DR: A model whereby unique and additive activities of FGFR1 and FGFR2 within the ICM coordinate establishment of two distinct lineages is proposed.

121 citations


Journal ArticleDOI
TL;DR: How the naïve state is inherently linked to preimplantation epiblast identity in the embryo is discussed and 12 key hallmarks of naïve pluripotency are defined, five of which are specific to primates.
Abstract: Naive pluripotent mouse embryonic stem cells (ESCs) resemble the preimplantation epiblast and efficiently contribute to chimaeras. Primate ESCs correspond to the postimplantation embryo and fail to resume development in chimaeric assays. Recent data suggest that human ESCs can be 'reset' to an earlier developmental stage, but their functional capacity remains ill defined. Here, we discuss how the naive state is inherently linked to preimplantation epiblast identity in the embryo. We hypothesise that distinctive features of primate development provide stringent criteria to evaluate naive pluripotency in human and other primate cells. Based on our hypothesis, we define 12 key hallmarks of naive pluripotency, five of which are specific to primates. These hallmarks may serve as a functional framework to assess human naive ESCs.

109 citations


Journal ArticleDOI
TL;DR: This study defines non-redundant roles for TET1 at an early postimplantation stage of the mouse embryo, when its paralogs Tet2 and Tet3 are not detectably expressed.
Abstract: The mammalian TET enzymes catalyze DNA demethylation. While they have been intensely studied as major epigenetic regulators, little is known about their physiological roles and the extent of functional redundancy following embryo implantation. Here we define non-redundant roles for TET1 at an early postimplantation stage of the mouse embryo, when its paralogs Tet2 and Tet3 are not detectably expressed. TET1 regulates numerous genes defining differentiation programs in the epiblast and extraembryonic ectoderm. In epiblast cells, TET1 demethylates gene promoters via hydroxymethylation and maintains telomere stability. Surprisingly, TET1 represses a majority of epiblast target genes independently of methylation changes, in part through regulation of the gene encoding the transcriptional repressor JMJD8. Dysregulated gene expression in the absence of TET1 causes embryonic defects, which are partially penetrant in an inbred strain but fully lethal in non-inbred mice. Collectively, our study highlights an interplay between the catalytic and non-catalytic activities of TET1 that is essential for normal development.

91 citations


Journal ArticleDOI
TL;DR: Using live tracking of Myc levels, it is shown that Myc-high ESCs approach the naive pluripotency state, whereas MyC-low ESCs are closer to the differentiation-primed state.

Journal ArticleDOI
TL;DR: In naive embryonic stem cell culture, it is found that insulin complements LIF signalling to support self-renewal; however, when it is removed, LIF, ActA and Wnt signalling not only induce PrE differentiation, but also support its expansion.
Abstract: Signalling downstream of Activin/Nodal (ActA) and Wnt can induce endoderm differentiation and also support self-renewal in pluripotent cells Here we find that these apparently contradictory activities are fine-tuned by insulin In the absence of insulin, the combination of these cytokines supports endoderm in a context-dependent manner When applied to naive pluripotent cells that resemble peri-implantation embryos, ActA and Wnt induce extra-embryonic primitive endoderm (PrE), whereas when applied to primed pluripotent epiblast stem cells (EpiSC), these cytokines induce gastrulation-stage embryonic definitive endoderm In naive embryonic stem cell culture, we find that insulin complements LIF signalling to support self-renewal; however, when it is removed, LIF, ActA and Wnt signalling not only induce PrE differentiation, but also support its expansion Self-renewal of these PrE cultures is robust and, on the basis of gene expression, these cells resemble early blastocyst-stage PrE, a naive endoderm state able to make both visceral and parietal endoderm

Journal ArticleDOI
TL;DR: Gene expression analysis of single blastomeres from zygote to blastocyst sheds light on the early cell fate determination in bovine preimplantation embryos and offers theoretical support for deriving bovines embryonic stem cells.
Abstract: Preimplantation embryos undergo zygotic genome activation and lineage specification resulting in three distinct cell types in the late blastocyst. The molecular mechanisms underlying this progress are largely unknown in bovines. Here, we sought to analyze an extensive set of regulators at the single-cell level to define the events involved in the development of the bovine blastocyst. Using a quantitative microfluidics approach in single cells, we analyzed mRNA levels of 96 genes known to function in early embryonic development and maintenance of stem cell pluripotency in parallel in 384 individual cells from bovine preimplantation embryos. The developmental transitions can be distinguished by distinctive gene expression profiles and we identified NOTCH1, expressed in early developmental stages, while T-box 3 (TBX3) and fibroblast growth factor receptor 4 (FGFR4), expressed in late developmental stages. Three lineages can be segregated in bovine expanded blastocysts based on the expression patterns of lineage-specific genes such as disabled homolog 2 (DAB2), caudal type homeobox 2 (CDX2), ATPase H+/K+ transporting non-gastric alpha2 subunit (ATP12A), keratin 8 (KRT8), and transcription factor AP-2 alpha (TFAP2A) for trophectoderm; GATA binding protein 6 (GATA6) and goosecoid homeobox (GSC) for primitive endoderm; and Nanog homeobox (NANOG), teratocarcinoma-derived growth factor 1 (TDGF1), and PR/SET domain 14 (PRDM14) for epiblast. Moreover, some lineage-specific genes were coexpressed in blastomeres from the morula. The commitment to trophectoderm and inner cell mass lineages in bovines occurs later than in the mouse, and KRT8 might be an earlier marker for bovine trophectoderm cells. We determined that TDGF1 and PRDM14 might play pivotal roles in the primitive endoderm and epiblast specification of bovine blastocysts. Our results shed light on early cell fate determination in bovine preimplantation embryos and offer theoretical support for deriving bovine embryonic stem cells.

Journal ArticleDOI
TL;DR: In this paper, the authors present computational models for cell type and tissue specification derived from a collection of 921 RNA-sequencing samples from 272 distinct mouse cell types or tissues.
Abstract: The current classification of cells in an organism is largely based on their anatomic and developmental origin. Cells types and tissues are traditionally classified into those that arise from the three embryonic germ layers, the ectoderm, mesoderm and endoderm, but this model does not take into account the organization of cell type-specific patterns of gene expression. Here, we present computational models for cell type and tissue specification derived from a collection of 921 RNA-sequencing samples from 272 distinct mouse cell types or tissues. In an unbiased fashion, this analysis accurately predicts the three known germ layers. Unexpectedly, this analysis also suggests that in total there are eight major domains of cell type-specification, corresponding to the neurectoderm, neural crest, surface ectoderm, endoderm, mesoderm, blood mesoderm, germ cells and the embryonic domain. Further, we identify putative genes responsible for specifying the domain and the cell type. This model has implications for understanding trans-lineage differentiation for stem cells, developmental cell biology and regenerative medicine.

Journal ArticleDOI
TL;DR: The purpose here was to identify molecular markers for each cell type in the bovine blastocyst and evaluate the differences in gene expression among individual cells of each lineage.
Abstract: The first two differentiation events in the embryo result in three cell types - epiblast, trophectoderm (TE) and hypoblast. The purpose here was to identify molecular markers for each cell type in the bovine and evaluate the differences in gene expression among individual cells of each lineage. The cDNA from 67 individual cells of dissociated blastocysts was used to determine transcript abundance for 93 genes implicated as cell lineage markers in other species or potentially involved in developmental processes. Clustering analysis indicated that the cells belonged to two major populations (clades A and B) with two subpopulations of clade A and four of clade B. Use of lineage-specific markers from other species indicated that the two subpopulations of clade A represented epiblast and hypoblast respectively while the four subpopulations of clade B were TE. Among the genes upregulated in epiblast were AJAP1, DNMT3A, FGF4, H2AFZ, KDM2B, NANOG, POU5F1, SAV1 and SLIT2 Genes overexpressed in hypoblast included ALPL, FGFR2, FN1, GATA6, GJA1, HDAC1, MBNL3, PDGFRA and SOX17, while genes overexpressed in all four TE populations were ACTA2, CDX2, CYP11A1, GATA2, GATA3, IFNT, KRT8, RAC1 and SFN The subpopulations of TE varied among each other for multiple genes including the prototypical TE marker IFNT. New markers for each cell type in the bovine blastocyst were identified. Results also indicate heterogeneity in gene expression among TE cells. Further studies are needed to confirm whether subpopulations of TE cells represent different stages in the development of a committed TE phenotype.

Journal ArticleDOI
TL;DR: Zeb2 is critical in ESCs for exit from the epiblast state, and links the pluripotency network and DNA‐methylation with irreversible commitment to differentiation.
Abstract: In human embryonic stem cells (ESCs) the transcription factor Zeb2 regulates neuroectoderm versus mesendoderm formation, but it is unclear how Zeb2 affects the global transcriptional regulatory network in these cell-fate decisions. We generated Zeb2 knockout (KO) mouse ESCs, subjected them as embryoid bodies (EBs) to neural and general differentiation and carried out temporal RNA-sequencing (RNA-seq) and reduced representation bisulfite sequencing (RRBS) analysis in neural differentiation. This shows that Zeb2 acts preferentially as a transcriptional repressor associated with developmental progression and that Zeb2 KO ESCs can exit from their naive state. However, most cells in these EBs stall in an early epiblast-like state and are impaired in both neural and mesendodermal differentiation. Genes involved in pluripotency, epithelial-to-mesenchymal transition (EMT), and DNA-(de)methylation, including Tet1, are deregulated in the absence of Zeb2. The observed elevated Tet1 levels in the mutant cells and the knowledge of previously mapped Tet1-binding sites correlate with loss-of-methylation in neural-stimulating conditions, however, after the cells initially acquired the correct DNA-methyl marks. Interestingly, cells from such Zeb2 KO EBs maintain the ability to re-adapt to 2i+LIF conditions even after prolonged differentiation, while knockdown of Tet1 partially rescues their impaired differentiation. Hence, in addition to its role in EMT, Zeb2 is critical in ESCs for exit from the epiblast state, and links the pluripotency network and DNA-methylation with irreversible commitment to differentiation. Stem Cells 2016

Journal ArticleDOI
Shaohua Li1, Yanmei Qi1, Karen McKee1, Jie Liu1, June Hsu1, Peter D. Yurchenco1 
TL;DR: The findings support the hypotheses that the locus of laminin cell surface assembly can determine the axis of epithelial polarity, and requires integrin- and/or dystroglycan-dependent binding to laminationin LG domains with the highest efficiency achieved when both receptors are present.

Journal ArticleDOI
15 May 2017-Leukemia
TL;DR: The emerging question of why hematopoietic cells express sex hormone receptors is discussed, which is closely connected with the migratory route of primordial germ cells from the proximal epiblast to the extraembryonic endoderm at the bottom of the yolk sac.
Abstract: Evidence has accumulated that normal human and murine hematopoietic stem cells express several functional pituitary and gonadal sex hormones, and that, in fact, some sex hormones, such as androgens, have been employed for many years to stimulate hematopoiesis in patients with bone marrow aplasia. Interestingly, sex hormone receptors are also expressed by leukemic cell lines and blasts. In this review, I will discuss the emerging question of why hematopoietic cells express these receptors. A tempting hypothetical explanation for this phenomenon is that hematopoietic stem cells are related to subpopulation of migrating primordial germ cells. To support of this notion, the anatomical sites of origin of primitive and definitive hematopoiesis during embryonic development are tightly connected with the migratory route of primordial germ cells: from the proximal epiblast to the extraembryonic endoderm at the bottom of the yolk sac and then back to the embryo proper via the primitive streak to the aorta-gonado-mesonephros (AGM) region on the way to the genital ridges. The migration of these cells overlaps with the emergence of primitive hematopoiesis in the blood islands at the bottom of the yolk sac, and definitive hematopoiesis that occurs in hemogenic endothelium in the embryonic dorsal aorta in AGM region.

Journal ArticleDOI
09 Jun 2017
TL;DR: The computational results first confirm that the previously proposed mechanism by which extra-cellular signalling allows cells to select the appropriate fate in a tristable regulatory network is robust when considering a realistic framework involving cell division and three-dimensional interactions, and suggest that the gene regulatory network confers differential plasticity to the different cell fates.
Abstract: Embryonic development is a self-organised process during which cells divide, interact, change fate according to a complex gene regulatory network and organise themselves in a three-dimensional space. Here, we model this complex dynamic phenomenon in the context of the acquisition of epiblast and primitive endoderm identities within the inner cell mass of the preimplantation embryo in the mouse. The multiscale model describes cell division and interactions between cells, as well as biochemical reactions inside each individual cell and in the extracellular matrix. The computational results first confirm that the previously proposed mechanism by which extra-cellular signalling allows cells to select the appropriate fate in a tristable regulatory network is robust when considering a realistic framework involving cell division and three-dimensional interactions. The simulations recapitulate a variety of in vivo observations on wild-type and mutant embryos and suggest that the gene regulatory network confers differential plasticity to the different cell fates. A detailed analysis of the specification process emphasizes that developmental transitions and the salt-and-pepper patterning of epiblast and primitive endoderm cells from a homogenous population of inner cell mass cells arise from the interplay between the internal gene regulatory network and extracellular signalling by Fgf4. Importantly, noise is necessary to create some initial heterogeneity in the specification process. The simulations suggest that initial cell-to-cell differences originating from slight inhomogeneities in extracellular Fgf4 signalling, in possible combination with slightly different concentrations of the key transcription factors between daughter cells, are able to break the original symmetry and are amplified in a flexible and self-regulated manner until the blastocyst stage. The early development of the mammalian embryo involves cell divisions and highly regulated lineage specification events. Cell fates are determined by gene regulatory networks exhibiting multiple steady states. The question arises as to how these networks interact with extracellular signalling, cell division and cell movement. Here, we investigate this question in the context of establishment of the salt-and-pepper pattern of epiblast (Epi) and primitive endoderm (PrE) cells within the inner cell mass (ICM) of the preimplantation embryo in the mouse, using a multi-scale computational model. The three cell fates correspond to three stable steady states of the gene regulatory network, which coexist in the salt-and-pepper pattern. The specification process is self-regulated through extracellular signalling and is robust towards cell division and cell movement.

Journal ArticleDOI
TL;DR: It is revealed that TE-deprived ICMs derived from 32-cell blastocysts are still able to reconstruct TE during in vitro culture, confirming totipotency of ICM cells at this stage, and demonstrated that the transition from full potency to lineage priming is prevented by inhibition of the FGF/MAPK signalling pathway.
Abstract: In order to ensure successful development, cells of the early mammalian embryo must differentiate to either trophectoderm (TE) or inner cell mass (ICM), followed by epiblast (EPI) or primitive endoderm (PE) specification within the ICM. Here, we deciphered the mechanism that assures the correct order of these sequential cell fate decisions. We revealed that TE-deprived ICMs derived from 32-cell blastocysts are still able to reconstruct TE during in vitro culture, confirming totipotency of ICM cells at this stage. ICMs isolated from more advanced blastocysts no longer retain totipotency, failing to form TE and generating PE on their surface. We demonstrated that the transition from full potency to lineage priming is prevented by inhibition of the FGF/MAPK signalling pathway. Moreover, we found that after this first restriction step, ICM cells still retain fate flexibility, manifested by ability to convert their fate into an alternative lineage (PE towards EPI and vice versa), until peri-implantation stage.

Journal ArticleDOI
TL;DR: A comprehensive analysis of rabbit preimplantation development reveals key differences between rabbit and mouse, with some aspects of lineage specification in rabbit more closely resembling that of human and primate embryos.
Abstract: Formation of epiblast (EPI) - the founder line of all embryonic lineages - and extra-embryonic supportive tissues is one of the key events in mammalian development. The prevailing model of early mammalian development is based almost exclusively on the mouse. Here, we provide a comprehensive, stage-by-stage analysis of EPI and extra-embryonic primitive endoderm (PrE) formation during preimplantation development of the rabbit. Although we observed that rabbit embryos have several features in common with mouse embryos, including a stage-related initiation of lineage specification, our results demonstrate the existence of some key differences in lineage specification among mammals. Contrary to the current view, our data suggest that reciprocal repression of GATA6 and NANOG is not fundamental for the initial stages of PrE versus EPI specification in mammals. Furthermore, our results provide insight into the observed discrepancies relating to the role of FGF/ERK signalling in PrE versus EPI specification between mouse and other mammals.

Journal ArticleDOI
TL;DR: It is shown that Pramel7 (PRAME-like 7), a protein highly expressed in the inner cell mass (ICM) but expressed at low levels in ESCs, targets for proteasomal degradation UHRF1, a key factor for DNA methylation maintenance.
Abstract: Naive pluripotency is established in preimplantation epiblast. Embryonic stem cells (ESCs) represent the immortalization of naive pluripotency. 2i culture has optimized this state, leading to a gene signature and DNA hypomethylation closely comparable to preimplantation epiblast, the developmental ground state. Here we show that Pramel7 (PRAME-like 7), a protein highly expressed in the inner cell mass (ICM) but expressed at low levels in ESCs, targets for proteasomal degradation UHRF1, a key factor for DNA methylation maintenance. Increasing Pramel7 expression in serum-cultured ESCs promotes a preimplantation epiblast-like gene signature, reduces UHRF1 levels and causes global DNA hypomethylation. Pramel7 is required for blastocyst formation and its forced expression locks ESCs in pluripotency. Pramel7/UHRF1 expression is mutually exclusive in ICMs whereas Pramel7-knockout embryos express high levels of UHRF1. Our data reveal an as-yet-unappreciated dynamic nature of DNA methylation through proteasome pathways and offer insights that might help to improve ESC culture to reproduce in vitro the in vivo ground-state pluripotency.

Posted ContentDOI
21 Nov 2017-bioRxiv
TL;DR: This work identifies key transcriptional features over developmental time and elucidate lineage-specific regulatory networks and defines robust transcriptional prototypes that capture epiblast and primitive endoderm lineages in the early human embryo.
Abstract: Single-cell profiling techniques create opportunities to delineate cell fate progression in mammalian development. Recent studies provide transcriptome data from human preimplantation embryos, in total comprising nearly 2000 individual cells. Interpretation of these data is confounded by biological factors such as variable embryo staging and cell-type ambiguity, as well as technical challenges in the collective analysis of datasets produced with different sample preparation and sequencing protocols. Here we address these issues to assemble a complete gene expression time course spanning human preimplantation embryogenesis. We identify key transcriptional features over developmental time and elucidate lineage-specific regulatory networks. We resolve post hoc cell-type assignment in the blastocyst, and define robust transcriptional prototypes that capture epiblast and primitive endoderm lineages. Examination of human pluripotent stem cell transcriptomes in this framework identifies culture conditions that sustain a naive state pertaining to the inner cell mass. Our approach thus clarifies understanding both of lineage segregation in the early human embryo and of in vitro stem cell identity, and provides an analytical resource for comparative molecular embryology.

Journal ArticleDOI
TL;DR: Current understanding and developmental features of various human pluripotency-associated phenotypes are reviewed and potential biological mechanisms that may support stable maintenance of an authentic epiblast-like ground state of human plurIPotency are discussed.
Abstract: Although human embryonic stem cells (hESCs) were first derived almost 20 years ago, it was only recently acknowledged that they share closer molecular and functional identity to postimplantation lineage-primed murine epiblast stem cells than to naive preimplantation inner cell mass-derived mouse ESCs (mESCs). A myriad of transcriptional, epigenetic, biochemical, and metabolic attributes have now been described that distinguish naive and primed pluripotent states in both rodents and humans. Conventional hESCs and human induced pluripotent stem cells (hiPSCs) appear to lack many of the defining hallmarks of naive mESCs. These include important features of the naive ground state murine epiblast, such as an open epigenetic architecture, reduced lineage-primed gene expression, and chimera and germline competence following injection into a recipient blastocyst-stage embryo. Several transgenic and chemical methods were recently reported that appear to revert conventional human PSCs to mESC-like ground states. However, it remains unclear if subtle deviations in global transcription, cell signaling dependencies, and extent of epigenetic/metabolic shifts in these various human naive-reverted pluripotent states represent true functional differences or alternatively the existence of distinct human pluripotent states along a spectrum. In this study, we review the current understanding and developmental features of various human pluripotency-associated phenotypes and discuss potential biological mechanisms that may support stable maintenance of an authentic epiblast-like ground state of human pluripotency.

Journal ArticleDOI
TL;DR: This study provides fundamental insight into the molecular basis for lineage segregation in post-implantation mouse embryos and discovered a subpopulation of mesoderm cells that possess molecular features of the extraembryonic Mesoderm.

Journal ArticleDOI
TL;DR: It is demonstrated that, during this late phase of specification, a 4 hours period of FGF/ERK inhibition prior E3.75 is sufficient to convert ICM cells into Epi, and it is shown that ICM conversion intoEpi in response to inhibition during this short time window requires both transcription and proteasome degradation.
Abstract: Inner cell Mass (ICM) specification into epiblast (Epi) and primitive endoderm (PrE) is an asynchronous and progressive process taking place between E3.0 to E3.75 under the control of the Fibroblast Growth Factor (FGF)/Extracellular signal-Regulated Kinase (ERK) signaling pathway. Here, we have analyzed in details the kinetics of specification and found that ICM cell responsiveness to the up and down regulation of FGF signaling activity are temporally distinct. We also showed that PrE progenitors are generated later than Epi progenitors. We further demonstrated that, during this late phase of specification, a 4 hours period of FGF/ERK inhibition prior E3.75 is sufficient to convert ICM cells into Epi. Finally, we showed that ICM conversion into Epi in response to inhibition during this short time window requires both transcription and proteasome degradation. Collectively, our data give new insights into the timing and mechanisms involved in the process of ICM specification.

Journal ArticleDOI
23 Nov 2017-eLife
TL;DR: The transcription factor Zfp281 functions in the exit from naive pluripotency occurring coincident with pre-to-post-implantation mouse embryonic development, providing a comprehensive molecular model for understanding pluripotent state progressions in vivo during mammalian embryonic development.
Abstract: Pluripotency is defined by a cell's potential to differentiate into any somatic cell type. How pluripotency is transited during embryo implantation, followed by cell lineage specification and establishment of the basic body plan, is poorly understood. Here we report the transcription factor Zfp281 functions in the exit from naive pluripotency occurring coincident with pre-to-post-implantation mouse embryonic development. By characterizing Zfp281 mutant phenotypes and identifying Zfp281 gene targets and protein partners in developing embryos and cultured pluripotent stem cells, we establish critical roles for Zfp281 in activating components of the Nodal signaling pathway and lineage-specific genes. Mechanistically, Zfp281 cooperates with histone acetylation and methylation complexes at target gene enhancers and promoters to exert transcriptional activation and repression, as well as epigenetic control of epiblast maturation leading up to anterior-posterior axis specification. Our study provides a comprehensive molecular model for understanding pluripotent state progressions in vivo during mammalian embryonic development.

Journal ArticleDOI
TL;DR: The reptilian branch of the amniote clade might provide useful tools to investigate the evolution of theAmniote internalization site up to the formation of the primitive streak, and a paramount role of the planar cell polarity (PCP) pathway in streak formation.
Abstract: In the animal kingdom, gastrulation, the process by which the primary germ layers are formed involves a dramatic transformation in the topology of the cells that give rise to all of the tissues of the adult. Initially formed as a mono-layer, this tissue, the epiblast, becomes subdivided through the internalization of cells, thereby forming a two (bi-laminar) or three (tri-laminar) layered embryo. This morphogenetic process coordinates the development of the fundamental body plan and the three-body axes (antero-posterior, dorso-ventral, and left-right) and begins a fundamental segregation of cells toward divergent developmental fates. In humans and other mammals, as well as in avians, gastrulating cells internalize along a structure, called the primitive streak, which builds from the periphery toward the center of the embryo. How these morphogenetic movements are orchestrated and evolved has been a question for developmental biologists for many years. Is the primitive streak a feature shared by the whole amniote clade? Insights from reptiles suggest that the primitive streak arose independently in mammals and avians, while the reptilian internalization site is a structure half-way between an amphibian blastopore and a primitive streak. The molecular machinery driving primitive streak formation has been partially dissected using mainly the avian embryo, revealing a paramount role of the planar cell polarity (PCP) pathway in streak formation. How did the employment of this machinery evolve? The reptilian branch of the amniote clade might provide us with useful tools to investigate the evolution of the amniote internalization site up to the formation of the primitive streak. WIREs Dev Biol 2017, 6:e262. doi: 10.1002/wdev.262 For further resources related to this article, please visit the WIREs website.

Journal ArticleDOI
TL;DR: It is demonstrated that cultured mouse embryonic stem cells (mESCs) express PDGFRα heterogeneously, and their selection from cultured mESCs yields pure PrE precursors, the in vitro counterpart of in vivo PrE Pre-implantation development.
Abstract: In early mouse pre-implantation development, primitive endoderm (PrE) precursors are platelet-derived growth factor receptor alpha (PDGFRα) positive. Here, we demonstrated that cultured mouse embryonic stem cells (mESCs) express PDGFRα heterogeneously, fluctuating between a PDGFRα+ (PrE-primed) and a platelet endothelial cell adhesion molecule 1 (PECAM1)-positive state (epiblast-primed). The two surface markers can be co-detected on a third subpopulation, expressing epiblast and PrE determinants (double-positive). In vitro, these subpopulations differ in their self-renewal and differentiation capability, transcriptional and epigenetic states. In vivo, double-positive cells contributed to epiblast and PrE, while PrE-primed cells exclusively contributed to PrE derivatives. The transcriptome of PDGFRα+ subpopulations differs from previously described subpopulations and shows similarities with early/mid blastocyst cells. The heterogeneity did not depend on PDGFRα but on leukemia inhibitory factor and fibroblast growth factor signaling and DNA methylation. Thus, PDGFRα+ cells represent the in vitro counterpart of in vivo PrE precursors, and their selection from cultured mESCs yields pure PrE precursors.

Journal ArticleDOI
TL;DR: Klf5 regulates lineage segregation by repressing Fgf4-Fgfr-ERK signalling in E3.0-3.25 morula, which suppresses the Gata6+ primitive endoderm specification programme and ensures the emergence of Nanog+ naïve pluripotent cells.
Abstract: The inner cell mass of the mouse blastocyst gives rise to the pluripotent epiblast (EPI), which forms the embryo proper, and the primitive endoderm (PrE), which forms extra-embryonic yolk sac tissues. All inner cells coexpress lineage markers such as Nanog and Gata6 at embryonic day (E) 3.25, and the EPI and PrE precursor cells eventually segregate to exclusively express Nanog and Gata6, respectively. Fibroblast growth factor (FGF)-extracellular signal-regulated kinase (ERK) signalling is involved in segregation of the EPI and PrE lineages; however, the mechanism involved in Fgf4 regulation is poorly understood. Here, we identified Klf5 as an upstream repressor of Fgf4Fgf4 was markedly upregulated in Klf5 knockout (KO) embryos at E3.0, and was downregulated in embryos overexpressing Klf5 Furthermore, Klf5 KO and overexpressing blastocysts showed skewed lineage specification phenotypes, similar to FGF4-treated preimplantation embryos and Fgf4 KO embryos, respectively. Inhibitors of the FGF receptor (Fgfr) and ERK pathways reversed the skewed lineage specification of Klf5 KO blastocysts. These data demonstrate that Klf5 suppresses Fgf4-Fgfr-ERK signalling, thus preventing precocious activation of the PrE specification programme.