scispace - formally typeset
Search or ask a question

Showing papers on "Heterochromatin published in 2018"


Journal ArticleDOI
TL;DR: In this paper, the authors discuss conserved principles of heterochromatin formation and function using selected examples from studies of a range of eukaryotes, from yeast to human, with an emphasis on insights obtained from unicellular model organisms.
Abstract: Heterochromatin is a key architectural feature of eukaryotic chromosomes, which endows particular genomic domains with specific functional properties. The capacity of heterochromatin to restrain the activity of mobile elements, isolate DNA repair in repetitive regions and ensure accurate chromosome segregation is crucial for maintaining genomic stability. Nucleosomes at heterochromatin regions display histone post-translational modifications that contribute to developmental regulation by restricting lineage-specific gene expression. The mechanisms of heterochromatin establishment and of heterochromatin maintenance are separable and involve the ability of sequence-specific factors bound to nascent transcripts to recruit chromatin-modifying enzymes. Heterochromatin can spread along the chromatin from nucleation sites. The propensity of heterochromatin to promote its own spreading and inheritance is counteracted by inhibitory factors. Because of its importance for chromosome function, heterochromatin has key roles in the pathogenesis of various human diseases. In this Review, we discuss conserved principles of heterochromatin formation and function using selected examples from studies of a range of eukaryotes, from yeast to human, with an emphasis on insights obtained from unicellular model organisms.

476 citations


Journal ArticleDOI
TL;DR: An overview of functional roles of Ki-67 across the cell cycle is presented and recent experiments that clarify its role in regulating cell cycle progression in human cells are described.
Abstract: Ki-67 protein has been widely used as a proliferation marker for human tumor cells for decades. In recent studies, multiple molecular functions of this large protein have become better understood. Ki-67 has roles in both interphase and mitotic cells, and its cellular distribution dramatically changes during cell cycle progression. These localizations correlate with distinct functions. For example, during interphase, Ki-67 is required for normal cellular distribution of heterochromatin antigens and for the nucleolar association of heterochromatin. During mitosis, Ki-67 is essential for formation of the perichromosomal layer (PCL), a ribonucleoprotein sheath coating the condensed chromosomes. In this structure, Ki-67 acts to prevent aggregation of mitotic chromosomes. Here, we present an overview of functional roles of Ki-67 across the cell cycle and also describe recent experiments that clarify its role in regulating cell cycle progression in human cells.

458 citations


Journal ArticleDOI
TL;DR: It is proposed that more comprehensive analyses of heterochromatin roles in tumorigenesis will be integral to future innovations in cancer treatment and the importance of its maintenance for genome integrity is discussed.
Abstract: Constitutive heterochromatin is a major component of the eukaryotic nucleus and is essential for the maintenance of genome stability. Highly concentrated at pericentromeric and telomeric domains, heterochromatin is riddled with repetitive sequences and has evolved specific ways to compartmentalize, silence, and repair repeats. The delicate balance between heterochromatin epigenetic maintenance and cellular processes such as mitosis and DNA repair and replication reveals a highly dynamic and plastic chromatin domain that can be perturbed by multiple mechanisms, with far-reaching consequences for genome integrity. Indeed, heterochromatin dysfunction provokes genetic turmoil by inducing aberrant repeat repair, chromosome segregation errors, transposon activation, and replication stress and is strongly implicated in aging and tumorigenesis. Here, we summarize the general principles of heterochromatin structure and function, discuss the importance of its maintenance for genome integrity, and propose that more comprehensive analyses of heterochromatin roles in tumorigenesis will be integral to future innovations in cancer treatment.

308 citations


Journal ArticleDOI
06 Sep 2018-Cell
TL;DR: The data indicate that transcription elongation by RNA polymerase II remodels genome 3D architecture and affects cohesin-mediated chromatin contacts within gene bodies.

299 citations


Journal ArticleDOI
TL;DR: In this article, it was shown that Drosophila HP1a protein undergoes liquid-liquid demixing in vitro, and nucleates into foci that display liquid properties during the early stages of heterochromatin domain formation in early Drosphila embryos, suggesting that the repressive action of H1 may be mediated in part by emergent properties of phase separation.

271 citations


Journal ArticleDOI
20 Jun 2018-Nature
TL;DR: De novo nuclear actin filaments and myosins are identified as effectors of chromatin dynamics for heterochromatin repair and stability in multicellular eukaryotes.
Abstract: Heterochromatin mainly comprises repeated DNA sequences that are prone to ectopic recombination. In Drosophila cells, ‘safe’ repair of heterochromatic double-strand breaks by homologous recombination relies on the relocalization of repair sites to the nuclear periphery before strand invasion. The mechanisms responsible for this movement were unknown. Here we show that relocalization occurs by directed motion along nuclear actin filaments assembled at repair sites by the Arp2/3 complex. Relocalization requires nuclear myosins associated with the heterochromatin repair complex Smc5/6 and the myosin activator Unc45, which is recruited to repair sites by Smc5/6. ARP2/3, actin nucleation and myosins also relocalize heterochromatic double-strand breaks in mouse cells. Defects in this pathway result in impaired heterochromatin repair and chromosome rearrangements. These findings identify de novo nuclear actin filaments and myosins as effectors of chromatin dynamics for heterochromatin repair and stability in multicellular eukaryotes. Relocalization of heterochromatic double-strand breaks to the nuclear periphery in Drosophila cells occurs via directed motions driven by nuclear actin filaments and myosins activated by the Smc5/6 complex.

258 citations


Journal ArticleDOI
TL;DR: It is demonstrated that H3K9me3-dependent heterochromatin undergoes dramatic reprogramming during early embryonic development and provide valuable resources for further exploration of the epigenetic mechanism in early embryos.
Abstract: H3K9me3-dependent heterochromatin is a major barrier of cell fate changes that must be reprogrammed after fertilization. However, the molecular details of these events are lacking in early embryos. Here, we map the genome-wide distribution of H3K9me3 modifications in mouse early embryos. We find that H3K9me3 exhibits distinct dynamic features in promoters and long terminal repeats (LTRs). Both parental genomes undergo large-scale H3K9me3 reestablishment after fertilization, and the imbalance in parental H3K9me3 signals lasts until blastocyst. The rebuilding of H3K9me3 on LTRs is involved in silencing their active transcription triggered by DNA demethylation. We identify that Chaf1a is essential for the establishment of H3K9me3 on LTRs and subsequent transcriptional repression. Finally, we find that lineage-specific H3K9me3 is established in post-implantation embryos. In summary, our data demonstrate that H3K9me3-dependent heterochromatin undergoes dramatic reprogramming during early embryonic development and provide valuable resources for further exploration of the epigenetic mechanism in early embryos.

245 citations


Journal ArticleDOI
15 Nov 2018-Cell
TL;DR: The identification of novel N6-methyladenine (N6-mA) DNA modifications in human tissues and implicate this epigenetic mark in human disease, specifically the highly malignant brain cancer glioblastoma, supporting this novel DNA modification as a potential therapeutic target for gliOBlastoma.

206 citations


Journal ArticleDOI
TL;DR: The three-dimensional structure of the H3K9me3-containing dinucleosomes complexed with human HP1α, HP1β, and HP1γ, determined by cryogenic electron microscopy with a Volta phase plate, depicts the fundamental architecture of heterochromatin.

185 citations


Journal ArticleDOI
12 Feb 2018-Oncogene
TL;DR: The focus will be on features of rDNA genes, which make them highly vulnerable to DNA damage and intra- and interchromosomal recombination as well as built-in mechanisms that prevent and repair rDNA damage, and how dysregulation of this interplay affects genome-wide DNA stability, gene expression and the balance between euchromatin and heterochromatin.
Abstract: The nucleolus is the major site for synthesis of ribosomes, complex molecular machines that are responsible for protein synthesis. A wealth of research over the past 20 years has clearly indicated that both quantitative and qualitative alterations in ribosome biogenesis can drive the malignant phenotype via dysregulation of protein synthesis. However, numerous recent proteomic, genomic, and functional studies have implicated the nucleolus in the regulation of processes that are unrelated to ribosome biogenesis, including DNA-damage response, maintenance of genome stability and its spatial organization, epigenetic regulation, cell-cycle control, stress responses, senescence, global gene expression, as well as assembly or maturation of various ribonucleoprotein particles. In this review, the focus will be on features of rDNA genes, which make them highly vulnerable to DNA damage and intra- and interchromosomal recombination as well as built-in mechanisms that prevent and repair rDNA damage, and how dysregulation of this interplay affects genome-wide DNA stability, gene expression and the balance between euchromatin and heterochromatin. We will also present the most recent insights into how malfunction of these cellular processes may be a central driving force of human malignancies, and propose a promising new therapeutic approach for the treatment of cancer.

167 citations


Journal ArticleDOI
TL;DR: The unique properties of this transcription factor class and the challenges of understanding their mechanism of action are highlighted.

Journal ArticleDOI
28 Sep 2018-Science
TL;DR: Results indicate that different proteins facilitate the transfer of parental (H3-H4)2 onto leading versus lagging strands and that Dbp3-Dpb4 plays an important role in this poorly understood process.
Abstract: How parental histone (H3-H4)2 tetramers, the primary carriers of epigenetic modifications, are transferred onto leading and lagging strands of DNA replication forks for epigenetic inheritance remains elusive. Here we show that parental (H3-H4)2 tetramers are assembled into nucleosomes onto both leading and lagging strands, with a slight preference for lagging strands. The lagging-strand preference increases markedly in budding yeast cells lacking Dpb3 and Dpb4, two subunits of the leading strand DNA polymerase, Pol e, owing to the impairment of parental (H3-H4)2 transfer to leading strands. Dpb3-Dpb4 binds H3-H4 in vitro and participates in the inheritance of heterochromatin. These results indicate that different proteins facilitate the transfer of parental (H3-H4)2 onto leading versus lagging strands and that Dbp3-Dpb4 plays an important role in this poorly understood process.

Journal ArticleDOI
TL;DR: Together, this work reveals a complex relationship between chromatin and meiotic DSBs within A. thaliana genes and transposons, with significance for the diversity and evolution of plant genomes.
Abstract: Meiotic recombination initiates from DNA double-strand breaks (DSBs) generated by SPO11 topoisomerase-like complexes. Meiotic DSB frequency varies extensively along eukaryotic chromosomes, with hotspots controlled by chromatin and DNA sequence. To map meiotic DSBs throughout a plant genome, we purified and sequenced Arabidopsis thaliana SPO11-1-oligonucleotides. SPO11-1-oligos are elevated in gene promoters, terminators, and introns, which is driven by AT-sequence richness that excludes nucleosomes and allows SPO11-1 access. A positive relationship was observed between SPO11-1-oligos and crossovers genome-wide, although fine-scale correlations were weaker. This may reflect the influence of interhomolog polymorphism on crossover formation, downstream from DSB formation. Although H3K4me3 is enriched in proximity to SPO11-1-oligo hotspots at gene 5' ends, H3K4me3 levels do not correlate with DSBs. Repetitive transposons are thought to be recombination silenced during meiosis, to prevent nonallelic interactions and genome instability. Unexpectedly, we found high SPO11-1-oligo levels in nucleosome-depleted Helitron/Pogo/Tc1/Mariner DNA transposons, whereas retrotransposons were coldspots. High SPO11-1-oligo transposons are enriched within gene regulatory regions and in proximity to immunity genes, suggesting a role as recombination enhancers. As transposon mobility in plant genomes is restricted by DNA methylation, we used the met1 DNA methyltransferase mutant to investigate the role of heterochromatin in SPO11-1-oligo distributions. Epigenetic activation of meiotic DSBs in proximity to centromeres and transposons occurred in met1 mutants, coincident with reduced nucleosome occupancy, gain of transcription, and H3K4me3. Together, our work reveals a complex relationship between chromatin and meiotic DSBs within A. thaliana genes and transposons, with significance for the diversity and evolution of plant genomes.

Journal ArticleDOI
Takahiro Ito1, Yee Voan Teo1, Shane A. Evans1, Nicola Neretti1, John M. Sedivy1 
TL;DR: It is shown here that downregulation of EZH2 promotes senescence through two distinct mechanisms, which provide insights into the processes that generate senescent cells during aging.

Journal ArticleDOI
23 May 2018-Nature
TL;DR: Together, the results reveal that ADNP, via the recruitment of HP1 and CHD4, regulates the expression of genes that are crucial for maintaining distinct cellular states and assures accurate cell fate decisions upon external cues.
Abstract: De novo mutations in ADNP, which encodes activity-dependent neuroprotective protein (ADNP), have recently been found to underlie Helsmoortel–Van der Aa syndrome, a complex neurological developmental disorder that also affects several other organ functions 1 . ADNP is a putative transcription factor that is essential for embryonic development 2 . However, its precise roles in transcriptional regulation and development are not understood. Here we show that ADNP interacts with the chromatin remodeller CHD4 and the chromatin architectural protein HP1 to form a stable complex, which we refer to as ChAHP. Besides mediating complex assembly, ADNP recognizes DNA motifs that specify binding of ChAHP to euchromatin. Genetic ablation of ChAHP components in mouse embryonic stem cells results in spontaneous differentiation concomitant with premature activation of lineage-specific genes and in a failure to differentiate towards the neuronal lineage. Molecularly, ChAHP-mediated repression is fundamentally different from canonical HP1-mediated silencing: HP1 proteins, in conjunction with histone H3 lysine 9 trimethylation (H3K9me3), are thought to assemble broad heterochromatin domains that are refractory to transcription. ChAHP-mediated repression, however, acts in a locally restricted manner by establishing inaccessible chromatin around its DNA-binding sites and does not depend on H3K9me3-modified nucleosomes. Together, our results reveal that ADNP, via the recruitment of HP1 and CHD4, regulates the expression of genes that are crucial for maintaining distinct cellular states and assures accurate cell fate decisions upon external cues. Such a general role of ChAHP in governing cell fate plasticity may explain why ADNP mutations affect several organs and body functions and contribute to cancer progression1,3,4. Notably, we found that the integrity of the ChAHP complex is disrupted by nonsense mutations identified in patients with Helsmoortel–Van der Aa syndrome, and this could be rescued by aminoglycosides that suppress translation termination 5 . Therefore, patients might benefit from therapeutic agents that are being developed to promote ribosomal read-through of premature stop codons6,7. ADNP interacts with the chromatin remodeller CHD4 and the heterochromatin protein HP1 to form a complex termed ChAHP that represses gene expression independently of the histone H3K9me3 modification.

Journal ArticleDOI
TL;DR: Recent observations have suggested that heterochromatin may possess liquid droplet-like properties and this work discusses how these observations provide a new perspective on the mechanisms for the assembly, regulation, and functions of heterochromaatin.
Abstract: In eukaryotic cells, structures called heterochromatin play critical roles in nuclear processes ranging from gene repression to chromosome segregation. Biochemical and in vivo studies over the past several decades have implied that the diverse functions of heterochromatin rely on the ability of these structures to spread across large regions of the genome, to compact the underlying DNA, and to recruit different types of activities. Recent observations have suggested that heterochromatin may possess liquid droplet-like properties. Here, we discuss how these observations provide a new perspective on the mechanisms for the assembly, regulation, and functions of heterochromatin.

Journal ArticleDOI
TL;DR: A critical role for the HUSH complex is revealed in naïve cells, implicating it in programming epigenetic marks in development and indicating that the Hush complex and TRIM28 co-repress young retrotransposons and new genes rewired by retro transposon noncoding DNA.
Abstract: Retrotransposons encompass half of the human genome and contribute to the formation of heterochromatin, which provides nuclear structure and regulates gene expression. Here, we asked if the human silencing hub (HUSH) complex is necessary to silence retrotransposons and whether it collaborates with TRIM28 and the chromatin remodeler ATRX at specific genomic loci. We show that the HUSH complex contributes to de novo repression and DNA methylation of an SVA retrotransposon reporter. By using naive versus primed mouse pluripotent stem cells, we reveal a critical role for the HUSH complex in naive cells, implicating it in programming epigenetic marks in development. Although the HUSH component FAM208A binds to endogenous retroviruses (ERVs) and long interspersed element-1s (LINE-1s or L1s), it is mainly required to repress evolutionarily young L1s (mouse-specific lineages <5 million years old). TRIM28, in contrast, is necessary to repress both ERVs and young L1s. Genes co-repressed by TRIM28 and FAM208A are evolutionarily young, or exhibit tissue-specific expression, are enriched in young L1s, and display evidence for regulation through LTR promoters. Finally, we demonstrate that the HUSH complex is also required to repress L1 elements in human cells. Overall, these data indicate that the HUSH complex and TRIM28 co-repress young retrotransposons and new genes rewired by retrotransposon noncoding DNA.

Journal ArticleDOI
TL;DR: CPSF6 serves as a master regulator of HIV-1 intranuclear localization by trafficking viral preintegration complexes away from heterochromatin at the periphery toward gene-dense chromosomal regions within the nuclear interior.

Journal ArticleDOI
TL;DR: It is concluded that genomic composition, epigenetic modification, and transcriptional activity could act in combination to shape global and local chromatin packing in rice.
Abstract: The non-random spatial packing of chromosomes in the nucleus plays a critical role in orchestrating gene expression and genome function. Here, we present a Hi-C analysis of the chromatin interaction patterns in rice (Oryza sativa L.) at hierarchical architectural levels. We confirm that rice chromosomes occupy their own territories with certain preferential inter-chromosomal associations. Moderate compartment delimitation and extensive TADs (Topologically Associated Domains) were determined to be associated with heterogeneous genomic compositions and epigenetic marks in the rice genome. We found subtle features including chromatin loops, gene loops, and off-/near-diagonal intensive interaction regions. Gene chromatin loops associated with H3K27me3 could be positively involved in gene expression. In addition to insulated enhancing effects for neighbor gene expression, the identified rice gene loops could bi-directionally (+/-) affect the expression of looped genes themselves. Finally, web-interleaved off-diagonal IHIs/KEEs (Interactive Heterochromatic Islands or KNOT ENGAGED ELEMENTs) could trap transposable elements (TEs) via the enrichment of silencing epigenetic marks. In parallel, the near-diagonal FIREs (Frequently Interacting Regions) could positively affect the expression of involved genes. Our results suggest that the chromatin packing pattern in rice is generally similar to that in Arabidopsis thaliana but with clear differences at specific structural levels. We conclude that genomic composition, epigenetic modification, and transcriptional activity could act in combination to shape global and local chromatin packing in rice. Our results confirm recent observations in rice and A. thaliana but also provide additional insights into the patterns and features of chromatin organization in higher plants.


Journal ArticleDOI
TL;DR: The results provide a genetic framework for engineering meiotic recombination landscapes in plant genomes and show that patterns of interhomolog polymorphism and heterochromatin drive recombination increases distally towards the subtelomeres in both HEI10 and recq4a recq 4b backgrounds, while the centromeres remain crossover suppressed.
Abstract: During meiosis, homologous chromosomes undergo reciprocal crossovers, which generate genetic diversity and underpin classical crop improvement. Meiotic recombination initiates from DNA double-strand breaks (DSBs), which are processed into single-stranded DNA that can invade a homologous chromosome. The resulting joint molecules can ultimately be resolved as crossovers. In Arabidopsis, competing pathways balance the repair of ∼100-200 meiotic DSBs into ∼10 crossovers per meiosis, with the excess DSBs repaired as noncrossovers. To bias DSB repair toward crossovers, we simultaneously increased dosage of the procrossover E3 ligase gene HEI10 and introduced mutations in the anticrossovers helicase genes RECQ4A and RECQ4B As HEI10 and recq4a recq4b increase interfering and noninterfering crossover pathways, respectively, they combine additively to yield a massive meiotic recombination increase. Interestingly, we also show that increased HEI10 dosage increases crossover coincidence, which indicates an effect on interference. We also show that patterns of interhomolog polymorphism and heterochromatin drive recombination increases distally towards the subtelomeres in both HEI10 and recq4a recq4b backgrounds, while the centromeres remain crossover suppressed. These results provide a genetic framework for engineering meiotic recombination landscapes in plant genomes.

Journal ArticleDOI
TL;DR: An important role for TERRAs is reported in telomeric heterochromatin formation by recruiting Polycomb Repressive Complex 2 to telomeres, demonstrating that telomere length maintenance and protection are essential.
Abstract: TERRAs are long non-coding RNAs generated from the telomeres. Lack of TERRA knockout models has hampered understanding TERRAs' functions. We recently identified chromosome 20q as one of the main origins of human TERRAs, allowing us to generate the first 20q-TERRA knockout models and to demonstrate that TERRAs are essential for telomere length maintenance and protection. Here, we use ALT 20q-TERRA knockout cells to address a direct role of TERRAs in telomeric heterochromatin formation. We find that 20q-TERRAs are essential for the establishment of H3K9me3, H4K20me3, and H3K27me3 heterochromatin marks at telomeres. At the mechanistic level, we find that TERRAs bind to PRC2, responsible for catalyzing H3K27 tri-methylation, and that its localization to telomeres is TERRA-dependent. We further demonstrate that PRC2-dependent H3K27me3 at telomeres is required for the establishment of H3K9me3, H4K20me3, and HP1 binding at telomeres. Together, these findings demonstrate an important role for TERRAs in telomeric heterochromatin assembly.

Journal ArticleDOI
TL;DR: Evidence is provided that increased levels of satellite RNAs in mammary glands induce tumor formation in mice, and it is shown that genomic instability induced by satelliteRNAs occurs through interactions with BRCA1-associated protein networks required for the stabilization of DNA replication forks.

Journal ArticleDOI
TL;DR: ChIP sequencing is used to demonstrate that sporozoites from mosquito salivary glands expand heterochromatin at subtelomeric regions to silence blood-stage-specific genes, and shows that the epigenetic signature of var genes is reset in mosquito stages.

Journal ArticleDOI
01 Feb 2018-Genetics
TL;DR: The current state of understanding of repressed chromatin in Caenorhabditis elegans is examined, focusing on roles of histone modifications associated with repression, such as methylation of hist one H3 lysine 9 (H3K9me 2/3) or the Polycomb Repressive Complex 2 (MES-2/3/6)-deposited modification H3K27me3, and on proteins that recognize these modifications.
Abstract: Chromatin is organized and compacted in the nucleus through the association of histones and other proteins, which together control genomic activity Two broad types of chromatin can be distinguished: euchromatin, which is generally transcriptionally active, and heterochromatin, which is repressed Here we examine the current state of our understanding of repressed chromatin in Caenorhabditis elegans, focusing on roles of histone modifications associated with repression, such as methylation of histone H3 lysine 9 (H3K9me2/3) or the Polycomb Repressive Complex 2 (MES-2/3/6)-deposited modification H3K27me3, and on proteins that recognize these modifications Proteins involved in chromatin repression are important for development, and have demonstrated roles in nuclear organization, repetitive element silencing, genome integrity, and the regulation of euchromatin Additionally, chromatin factors participate in repression with small RNA pathways Recent findings shed light on heterochromatin function and regulation in C elegans, and should inform our understanding of repressed chromatin in other animals

Journal ArticleDOI
TL;DR: This study provides insights into the contribution of ATRX loss of function to tumorigenesis through the loss of rDNA stability and suggests the therapeutic potential of targeting Pol I transcription in ALT cancers.
Abstract: ATRX (alpha thalassemia/mental retardation X-linked) complexes with DAXX to deposit histone variant H3.3 into repetitive heterochromatin. Recent genome sequencing studies in cancers have revealed mutations in ATRX and their association with ALT (alternative lengthening of telomeres) activation. Here we report depletion of ATRX in mouse ES cells leads to selective loss in ribosomal RNA gene (rDNA) copy number. Supporting this, ATRX-mutated human ALT-positive tumors also show a substantially lower rDNA copy than ALT-negative tumors. Further investigation shows that the rDNA copy loss and repeat instability are caused by a disruption in H3.3 deposition and thus a failure in heterochromatin formation at rDNA repeats in the absence of ATRX. We also find that ATRX-depleted cells are reduced in ribosomal RNA transcription output and show increased sensitivity to RNA polymerase I (Pol I) transcription inhibitor CX5461. In addition, human ALT-positive cancer cell lines are also more sensitive to CX5461 treatment. Our study provides insights into the contribution of ATRX loss of function to tumorigenesis through the loss of rDNA stability and suggests the therapeutic potential of targeting Pol I transcription in ALT cancers.

Journal ArticleDOI
TL;DR: It is revealed that tau localises to the nucleolus in undifferentiated and differentiated neuroblastoma cells (SHSY5Y), where it associates with TIP5, a key player in heterochromatin stability and ribosomal DNA (rDNA) transcriptional repression.
Abstract: Tau is known for its pathological role in neurodegenerative diseases, including Alzheimer’s disease (AD) and other tauopathies. Tau is found in many subcellular compartments such as the cytosol and the nucleus. Although its normal role in microtubule binding is well established, its nuclear role is still unclear. Here, we reveal that tau localises to the nucleolus in undifferentiated and differentiated neuroblastoma cells (SHSY5Y), where it associates with TIP5, a key player in heterochromatin stability and ribosomal DNA (rDNA) transcriptional repression. Immunogold labelling on human brain sample confirms the physiological relevance of this finding by showing tau within the nucleolus colocalises with TIP5. Depletion of tau results in an increase in rDNA transcription with an associated decrease in heterochromatin and DNA methylation, suggesting that under normal conditions tau is involved in silencing of the rDNA. Cellular stress induced by glutamate causes nucleolar stress associated with the redistribution of nucleolar non-phosphorylated tau, in a similar manner to fibrillarin, and nuclear upsurge of phosphorylated tau (Thr231) which doesn’t colocalise with fibrillarin or nucleolar tau. This suggests that stress may impact on different nuclear tau species. In addition to involvement in rDNA transcription, nucleolar non-phosphorylated tau also undergoes stress-induced redistribution similar to many nucleolar proteins.

Journal ArticleDOI
TL;DR: CEN transcription and its contribution to faithful kinetochore function is reviewed, and how pericentromeric chromatin is silenced by RNA processing and transcriptionally repressive chromatin marks is discussed.
Abstract: The chromosomal loci known as centromeres (CEN) mediate the equal distribution of the duplicated genome between both daughter cells. Specifically, centromeres recruit a protein complex named the kinetochore, that bi-orients the replicated chromosome pairs to the mitotic or meiotic spindle structure. The paired chromosomes are then separated, and the individual chromosomes segregate in opposite direction along the regressing spindle into each daughter cell. Erroneous kinetochore assembly or activity produces aneuploid cells that contain an abnormal number of chromosomes. Aneuploidy may incite cell death, developmental defects (including genetic syndromes), and cancer (>90% of all cancer cells are aneuploid). While kinetochores and their activities have been preserved through evolution, the CEN DNA sequences have not. Hence, to be recognized as sites for kinetochore assembly, CEN display conserved structural themes. In addition, CEN nucleosomes enclose a CEN-exclusive variant of histone H3, named CENP-A, and carry distinct epigenetic labels on CENP-A and the other CEN histone proteins. Through the cell cycle, CEN are transcribed into non-coding RNAs. After subsequent processing, they become key components of the CEN chromatin by marking the CEN locus and by stably anchoring the CEN-binding kinetochore proteins. CEN transcription is tightly regulated, of low intensity, and essential for differentiation and development. Under- or overexpression of CEN transcripts, as documented for myriad cancers, provoke chromosome missegregation and aneuploidy. CEN are genetically stable and fully competent only when they are insulated from the surrounding, pericentromeric chromatin, which must be silenced. We will review CEN transcription and its contribution to faithful kinetochore function. We will further discuss how pericentromeric chromatin is silenced by RNA processing and transcriptionally repressive chromatin marks. We will report on the transcriptional misregulation of (peri)centromeres during stress, natural aging, and disease and reflect on whether their transcripts can serve as future diagnostic tools and anti-cancer targets in the clinic.

Journal ArticleDOI
TL;DR: Cryo-electron tomography is used to determine the in situ structures of HeLa nucleosomes, which have canonical core structures and asymmetric, flexible linker DNA, which are compatible with the conformational variability of the two linker DNAs at the single-nucleosome level.
Abstract: The in situ three-dimensional organization of chromatin at the nucleosome and oligonucleosome levels is unknown. Here we use cryo-electron tomography to determine the in situ structures of HeLa nucleosomes, which have canonical core structures and asymmetric, flexible linker DNA. Subtomogram remapping suggests that sequential nucleosomes in heterochromatin follow irregular paths at the oligonucleosome level. This basic principle of higher-order repressive chromatin folding is compatible with the conformational variability of the two linker DNAs at the single-nucleosome level.

Journal ArticleDOI
TL;DR: High-resolution strand-specific R-loop mapping in human cells depleted for Top1 is performed and finds that Top1 depletion results in both R- loop gains and losses at thousands of transcribed loci, delineating two distinct gene classes.
Abstract: Co-transcriptional R-loops are abundant non-B DNA structures in mammalian genomes. DNA Topoisomerase I (Top1) is often thought to regulate R-loop formation owing to its ability to resolve both positive and negative supercoils. How Top1 regulates R-loop structures at a global level is unknown. Here, we perform high-resolution strand-specific R-loop mapping in human cells depleted for Top1 and find that Top1 depletion results in both R-loop gains and losses at thousands of transcribed loci, delineating two distinct gene classes. R-loop gains are characteristic for long, highly transcribed, genes located in gene-poor regions anchored to Lamin B1 domains and in proximity to H3K9me3-marked heterochromatic patches. R-loop losses, by contrast, occur in gene-rich regions overlapping H3K27me3-marked active replication initiation regions. Interestingly, Top1 depletion coincides with a block of the cell cycle in G0/G1 phase and a trend towards replication delay. Our findings reveal new properties of Top1 in regulating R-loop homeostasis in a context-dependent manner and suggest a potential role for Top1 in modulating the replication process via R-loop formation.