scispace - formally typeset
Search or ask a question

Showing papers on "Immune system published in 2005"


Journal ArticleDOI
15 Feb 2005-Blood
TL;DR: Insight is offered into the interactions between allogeneic MSCs and immune cells and mechanisms likely involved with the in vivo MSC-mediated induction of tolerance that could be therapeutic for reduction of GVHD, rejection, and modulation of inflammation.

4,264 citations


Journal ArticleDOI
15 Jul 2005-Cell
TL;DR: During colonization of animals with the ubiquitous gut microorganism Bacteroides fragilis, a bacterial polysaccharide (PSA) directs the cellular and physical maturation of the developing immune system.

2,520 citations


Journal ArticleDOI
01 Mar 2005-Immunity
TL;DR: Analysis of Foxp3 expression during thymic development suggests that this mechanism is not hard-wired but is dependent on TCR/MHC ligand interactions, and it is shown that expression ofFoxp3 is highly restricted to the subset alphabeta of T cells and, irrespective of CD25 expression, correlates with suppressor activity.

2,248 citations


Journal ArticleDOI
07 Apr 2005-Nature
TL;DR: It is shown that mice deficient in the Irf7 gene are more vulnerable than Myd88-/- mice to viral infection, and this correlates with a marked decrease in serum IFN levels, indicating the importance of the IRF-7-dependent induction of systemic IFN responses for innate antiviral immunity.
Abstract: The type-I interferon (IFN-alpha/beta) response is critical to immunity against viruses and can be triggered in many cell types by cytosolic detection of viral infection, or in differentiated plasmacytoid dendritic cells by the Toll-like receptor 9 (TLR9) subfamily, which generates signals via the adaptor MyD88 to elicit robust IFN induction. Using mice deficient in the Irf7 gene (Irf7-/- mice), we show that the transcription factor IRF-7 is essential for the induction of IFN-alpha/beta genes via the virus-activated, MyD88-independent pathway and the TLR-activated, MyD88-dependent pathway. Viral induction of MyD88-independent IFN-alpha/beta genes is severely impaired in Irf7-/- fibroblasts. Consistently, Irf7-/- mice are more vulnerable than Myd88-/- mice to viral infection, and this correlates with a marked decrease in serum IFN levels, indicating the importance of the IRF-7-dependent induction of systemic IFN responses for innate antiviral immunity. Furthermore, robust induction of IFN production by activation of the TLR9 subfamily in plasmacytoid dendritic cells is entirely dependent on IRF-7, and this MyD88-IRF-7 pathway governs the induction of CD8+ T-cell responses. Thus, all elements of IFN responses, whether the systemic production of IFN in innate immunity or the local action of IFN from plasmacytoid dendritic cells in adaptive immunity, are under the control of IRF-7.

2,110 citations


Journal ArticleDOI
TL;DR: In the early stages of MS, the activation of CD4+ autoreactive T cells and their differentiation into a Th1 phenotype are a crucial events in the initial steps, and these cells are probably also important players in the long-term evolution of the disease.
Abstract: Multiple sclerosis (MS) develops in young adults with a complex predisposing genetic trait and probably requires an inciting environmental insult such as a viral infection to trigger the disease. The activation of CD4+ autoreactive T cells and their differentiation into a Th1 phenotype are a crucial events in the initial steps, and these cells are probably also important players in the long-term evolution of the disease. Damage of the target tissue, the central nervous system, is, however, most likely mediated by other components of the immune system, such as antibodies, complement, CD8+ T cells, and factors produced by innate immune cells. Perturbations in immunomodulatory networks that include Th2 cells, regulatory CD4+ T cells, NK cells, and others may in part be responsible for the relapsing-remitting or chronic progressive nature of the disease. However, an important paradigmatic shift in the study of MS has occurred in the past decade. It is now clear that MS is not just a disease of the immune system, but that factors contributed by the central nervous system are equally important and must be considered in the future.

2,050 citations


Journal ArticleDOI
TL;DR: After more than two decades of effort by researchers, IPCs finally claim their place in the hematopoietic chart as the most important cell type in antiviral innate immunity.
Abstract: ▪ Abstract Type 1 interferon-(α, β, ω)-producing cells (IPCs), also known as plasmacytoid dendritic cell precursors (pDCs), represent 0.2%–0.8% of peripheral blood mononuclear cells in both humans and mice. IPCs display plasma cell morphology, selectively express Toll-like receptor (TLR)-7 and TLR9, and are specialized in rapidly secreting massive amounts of type 1 interferon following viral stimulation. IPCs can promote the function of natural killer cells, B cells, T cells, and myeloid DCs through type 1 interferons during an antiviral immune response. At a later stage of viral infection, IPCs differentiate into a unique type of mature dendritic cell, which directly regulates the function of T cells and thus links innate and adaptive immune responses. After more than two decades of effort by researchers, IPCs finally claim their place in the hematopoietic chart as the most important cell type in antiviral innate immunity. Understanding IPC biology holds future promise for developing cures for infectious...

1,635 citations


Journal ArticleDOI
TL;DR: This Review article focuses on the relevance of L-arginine metabolism by myeloid cells for immunity under physiological and pathological conditions.
Abstract: L-Arginine is an essential amino acid for birds and young mammals, and it is a conditionally essential amino acid for adult mammals, as it is important in situations in which requirements exceed production, such as pregnancy. Recent findings indicate that increased metabolism of L-arginine by myeloid cells can result in the impairment of lymphocyte responses to antigen during immune responses and tumour growth. Two enzymes that compete for L-arginine as a substrate - arginase and nitric-oxide synthase - are crucial components of this lymphocyte-suppression pathway, and the metabolic products of these enzymes are important moderators of T-cell function. This Review article focuses on the relevance of L-arginine metabolism by myeloid cells for immunity under physiological and pathological conditions.

1,564 citations


Journal ArticleDOI
TL;DR: The various negative regulatory mechanisms that have evolved to attenuate TLR signalling to maintain this immunological balance are discussed.
Abstract: Toll-like receptors (TLRs) are involved in host defence against invading pathogens, functioning as primary sensors of microbial products and activating signalling pathways that induce the expression of immune and pro-inflammatory genes. However, TLRs have also been implicated in several immune-mediated and inflammatory diseases. As the immune system needs to constantly strike a balance between activation and inhibition to avoid detrimental and inappropriate inflammatory responses, TLR signalling must be tightly regulated. Here, we discuss the various negative regulatory mechanisms that have evolved to attenuate TLR signalling to maintain this immunological balance.

1,501 citations


Journal ArticleDOI
TL;DR: The properties of the mucosal immune system are reviewed and advances in the development of mucosal vaccines for protection against infections and for treatment of various inflammatory disorders are discussed.
Abstract: There is currently great interest in developing mucosal vaccines against a variety of microbial pathogens. Mucosally induced tolerance also seems to be a promising form of immunomodulation for treating certain autoimmune diseases and allergies. Here we review the properties of the mucosal immune system and discuss advances in the development of mucosal vaccines for protection against infections and for treatment of various inflammatory disorders.

1,339 citations


Journal ArticleDOI
TL;DR: Injection into mice of immunostimulatory siRNA, when complexed with cationic liposomes, induced systemic immune responses in the same range as the TLR9 ligand CpG, including IFN-α in serum and activation of T cells and dendritic cells in spleen.
Abstract: Short interfering RNA (siRNA) is used in RNA interference technology to avoid non-target-related induction of type I interferon (IFN) typical for long double-stranded RNA. Here we show that in plasmacytoid dendritic cells (PDC), an immune cell subset specialized in the detection of viral nucleic acids and production of type I IFN, some siRNA sequences, independent of their GU content, are potent stimuli of IFN-alpha production. Localization of the immunostimulatory motif on the sense strand of a potent IFN-alpha-inducing siRNA allowed dissection of immunostimulation and target silencing. Injection into mice of immunostimulatory siRNA, when complexed with cationic liposomes, induced systemic immune responses in the same range as the TLR9 ligand CpG, including IFN-alpha in serum and activation of T cells and dendritic cells in spleen. Immunostimulation by siRNA was absent in TLR7-deficient mice. Thus sequence-specific TLR7-dependent immune recognition in PDC needs to be considered as an additional biological activity of siRNA, which then should be termed immunostimulatory RNA (isRNA).

1,310 citations


Journal ArticleDOI
TL;DR: The first glimpse of the total human T cell response to a complex infectious agent is provided and insight into the rules governing immunodominance and cross-reactivity in complex viral infections of humans is provided.
Abstract: Human cytomegalovirus (HCMV) infections of immunocompetent hosts are characterized by a dynamic, life-long interaction in which host immune responses, particularly of T cells, restrain viral replication and prevent disease but do not eliminate the virus or preclude transmission. Because HCMV is among the largest and most complex of known viruses, the T cell resources committed to maintaining this balance have never been characterized completely. Here, using cytokine flow cytometry and 13,687 overlapping 15mer peptides comprising 213 HCMV open reading frames (ORFs), we found that 151 HCMV ORFs were immunogenic for CD4 + and/or CD8 + T cells, and that ORF immunogenicity was influenced only modestly by ORF expression kinetics and function. We further documented that total HCMV-specific T cell responses in seropositive subjects were enormous, comprising on average ∼10% of both the CD4 + and CD8 + memory compartments in blood, whereas cross-reactive recognition of HCMV proteins in seronegative individuals was limited to CD8 + T cells and was rare. These data provide the first glimpse of the total human T cell response to a complex infectious agent and will provide insight into the rules governing immunodominance and cross-reactivity in complex viral infections of humans.

Journal ArticleDOI
28 Apr 2005-Nature
TL;DR: The data demonstrate that over one-half of all memory CD4+ T cells in SIV-infected macaques are destroyed directly by viral infection during the acute phase—an insult that certainly heralds subsequent immunodeficiency.
Abstract: It has recently been established that both acute human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections are accompanied by a dramatic and selective loss of memory CD4+ T cells predominantly from the mucosal surfaces. The mechanism underlying this depletion of memory CD4+ T cells (that is, T-helper cells specific to previously encountered pathogens) has not been defined. Using highly sensitive, quantitative polymerase chain reaction together with precise sorting of different subsets of CD4+ T cells in various tissues, we show that this loss is explained by a massive infection of memory CD4+ T cells by the virus. Specifically, 30-60% of CD4+ memory T cells throughout the body are infected by SIV at the peak of infection, and most of these infected cells disappear within four days. Furthermore, our data demonstrate that the depletion of memory CD4+ T cells occurs to a similar extent in all tissues. As a consequence, over one-half of all memory CD4+ T cells in SIV-infected macaques are destroyed directly by viral infection during the acute phase-an insult that certainly heralds subsequent immunodeficiency. Our findings point to the importance of reducing the cell-associated viral load during acute infection through therapeutic or vaccination strategies.

Journal ArticleDOI
04 Aug 2005-Nature
TL;DR: It is demonstrated that NK cells acquire functional competence through ‘licensing’ by self-MHC molecules, which results in two types of self-tolerant NK cells—licensed or unlicensed—and may provide new insights for exploiting NK cells in immunotherapy.
Abstract: Self versus non-self discrimination is a central theme in biology from plants to vertebrates, and is particularly relevant for lymphocytes that express receptors capable of recognizing self-tissues and foreign invaders. Comprising the third largest lymphocyte population, natural killer (NK) cells recognize and kill cellular targets and produce pro-inflammatory cytokines. These potentially self-destructive effector functions can be controlled by inhibitory receptors for the polymorphic major histocompatibility complex (MHC) class I molecules that are ubiquitously expressed on target cells. However, inhibitory receptors are not uniformly expressed on NK cells, and are germline-encoded by a set of polymorphic genes that segregate independently from MHC genes. Therefore, how NK-cell self-tolerance arises in vivo is poorly understood. Here we demonstrate that NK cells acquire functional competence through 'licensing' by self-MHC molecules. Licensing involves a positive role for MHC-specific inhibitory receptors and requires the cytoplasmic inhibitory motif originally identified in effector responses. This process results in two types of self-tolerant NK cells--licensed or unlicensed--and may provide new insights for exploiting NK cells in immunotherapy. This self-tolerance mechanism may be more broadly applicable within the vertebrate immune system because related germline-encoded inhibitory receptors are widely expressed on other immune cells.

Journal ArticleDOI
TL;DR: Mast cells may influence the development, intensity and duration of adaptive immune responses that contribute to host defense, allergy and autoimmunity, rather than simply functioning as effector cells in these settings.
Abstract: Mast cells are so widely recognized as critical effector cells in allergic disorders and other immunoglobulin E-associated acquired immune responses that it can be difficult to think of them in any other context. However, mast cells also can be important as initiators and effectors of innate immunity. In addition, mast cells that are activated during innate immune responses to pathogens, or in other contexts, can secrete products and have cellular functions with the potential to facilitate the development, amplify the magnitude or regulate the kinetics of adaptive immune responses. Thus, mast cells may influence the development, intensity and duration of adaptive immune responses that contribute to host defense, allergy and autoimmunity, rather than simply functioning as effector cells in these settings.

Journal ArticleDOI
TL;DR: The immunogenicity of antigens delivered by dendritic cells has now been shown in patients with cancer, and a better understanding of how dendrites regulate immune responses will allow us to better exploit these cells to induce effective antitumour immunity.
Abstract: Mouse studies have shown that the immune system can reject tumours, and the identification of tumour antigens that can be recognized by human T cells has facilitated the development of immunotherapy protocols. Vaccines against cancer aim to induce tumour-specific effector T cells that can reduce the tumour mass, as well as tumour-specific memory T cells that can control tumour relapse. Owing to their capacity to regulate T-cell immunity, dendritic cells are increasingly used as adjuvants for vaccination, and the immunogenicity of antigens delivered by dendritic cells has now been shown in patients with cancer. A better understanding of how dendritic cells regulate immune responses will allow us to better exploit these cells to induce effective antitumour immunity.

Journal ArticleDOI
TL;DR: It is proposed that mast cells are "tunable," by both genetic and environmental factors, such that, depending on the circumstances, the cell can be positioned phenotypically to express a wide spectrum of variation in the types, kinetics, and/or magnitude of its secretory functions.
Abstract: ▪ Abstract This review focuses on recent progress in our understanding of how mast cells can contribute to the initiation, development, expression, and regulation of acquired immune responses, both those associated with IgE and those that are apparently expressed independently of this class of Ig We emphasize findings derived from in vivo studies in mice, particularly those employing genetic approaches to influence mast cell numbers and/or to alter or delete components of pathways that can regulate mast cell development, signaling, or function We advance the hypothesis that mast cells not only can function as proinflammatory effector cells and drivers of tissue remodeling in established acquired immune responses, but also may contribute to the initiation and regulation of such responses That is, we propose that mast cells can also function as immunoregulatory cells Finally, we show that the notion that mast cells have primarily two functional configurations, off (or resting) or on (or activated for ex

Journal ArticleDOI
TL;DR: Staphylococcus aureus can cause superficial skin infections and, occasionally, deep-seated infections that entail spread through the blood stream, and must rely primarily on cell-surface polymers and the ability to form a biolfilm to survive in the host.
Abstract: Staphylococcus aureus can cause superficial skin infections and, occasionally, deep-seated infections that entail spread through the blood stream. The organism expresses several factors that compromise the effectiveness of neutrophils and macrophages, the first line of defence against infection. S. aureus secretes proteins that inhibit complement activation and neutrophil chemotaxis or that lyse neutrophils, neutralizes antimicrobial defensin peptides, and its cell surface is modified to reduce their effectiveness. The organism can survive in phagosomes, express polysaccharides and proteins that inhibit opsonization by antibody and complement, and its cell wall is resistant to lysozyme. Furthermore, S. aureus expresses several types of superantigen that corrupt the normal humoral immune response, resulting in anergy and immunosuppression. In contrast, Staphylococcus epidermidis must rely primarily on cell-surface polymers and the ability to form a biolfilm to survive in the host.

Journal ArticleDOI
TL;DR: A comprehensive theory of pathogenesis is proposed for SARS with immune and lung damage as key features and SARS virus seemed to be capable of infecting multiple cell types in several organs.
Abstract: After >8,000 infections and >700 deaths worldwide, the pathogenesis of the new infectious disease, severe acute respiratory syndrome (SARS), remains poorly understood. We investigated 18 autopsies of patients who had suspected SARS; 8 cases were confirmed as SARS. We evaluated white blood cells from 22 confirmed SARS patients at various stages of the disease. T lymphocyte counts in 65 confirmed and 35 misdiagnosed SARS cases also were analyzed retrospectively. SARS viral particles and genomic sequence were detected in a large number of circulating lymphocytes, monocytes, and lymphoid tissues, as well as in the epithelial cells of the respiratory tract, the mucosa of the intestine, the epithelium of the renal distal tubules, the neurons of the brain, and macrophages in different organs. SARS virus seemed to be capable of infecting multiple cell types in several organs; immune cells and pulmonary epithelium were identified as the main sites of injury. A comprehensive theory of pathogenesis is proposed for SARS with immune and lung damage as key features.

Journal ArticleDOI
TL;DR: The challenge for the future will be to identify the trafficking molecules that will most specifically inhibit the key subsets of cells that drive disease processes without affecting the migration and function of leukocytes required for protective immunity.
Abstract: The burgeoning field of leukocyte trafficking has created new and exciting opportunities in the clinic. Trafficking signals are being defined that finely control the movement of distinct subsets of immune cells into and out of specific tissues. Because the accumulation of leukocytes in tissues contributes to a wide variety of diseases, these 'molecular codes' have provided new targets for inhibiting tissue-specific inflammation, which have been confirmed in the clinic. However, immune cell migration is also critically important for the delivery of protective immune responses to tissues. Thus, the challenge for the future will be to identify the trafficking molecules that will most specifically inhibit the key subsets of cells that drive disease processes without affecting the migration and function of leukocytes required for protective immunity.

Journal ArticleDOI
TL;DR: It is shown that even in the absence of any adjuvant, tumor cells dying in response to anthracyclins can elicit an effective antitumor immune response that suppresses the growth of inoculated tumors or leads to the regression of established neoplasia.
Abstract: Systemic anticancer chemotherapy is immunosuppressive and mostly induces nonimmunogenic tumor cell death. Here, we show that even in the absence of any adjuvant, tumor cells dying in response to anthracyclins can elicit an effective antitumor immune response that suppresses the growth of inoculated tumors or leads to the regression of established neoplasia. Although both antracyclins and mitomycin C induced apoptosis with caspase activation, only anthracyclin-induced immunogenic cell death was immunogenic. Caspase inhibition by Z-VAD-fmk or transfection with the baculovirus inhibitor p35 did not inhibit doxorubicin (DX)-induced cell death, yet suppressed the immunogenicity of dying tumor cells in several rodent models of neoplasia. Depletion of dendritic cells (DCs) or CD8 + T cells abolished the immune response against DX-treated apoptotic tumor cells in vivo. Caspase inhibition suppressed the capacity of DX-killed cells to be phagocytosed by DCs, yet had no effect on their capacity to elicit DC maturation. Freshly excised tumors became immunogenic upon DX treatment in vitro, and intratumoral inoculation of DX could trigger the regression of established tumors in immunocompetent mice. These results delineate a procedure for the generation of cancer vaccines and the stimulation of anti-neoplastic immune responses in vivo.

Journal ArticleDOI
TL;DR: It is reported that synthetic siRNAs formulated in nonviral delivery vehicles can be potent inducers of interferons and inflammatory cytokines both in vivo in mice and in vitro in human blood.
Abstract: Short interfering RNAs (siRNAs) that mediate specific gene silencing through RNA interference (RNAi) are widely used to study gene function and are also being developed for therapeutic applications. Many nucleic acids, including double- (dsRNA) and single-stranded RNA (ssRNA), can stimulate innate cytokine responses in mammals. Despite this, few studies have questioned whether siRNA may have a similar effect on the immune system. This could significantly influence the in vivo application of siRNA owing to off-target effects and toxicities associated with immune stimulation. Here we report that synthetic siRNAs formulated in nonviral delivery vehicles can be potent inducers of interferons and inflammatory cytokines both in vivo in mice and in vitro in human blood. The immunostimulatory activity of formulated siRNAs and the associated toxicities are dependent on the nucleotide sequence. We have identified putative immunostimulatory motifs that have allowed the design of siRNAs that can mediate RNAi but induce minimal immune activation.

Journal ArticleDOI
TL;DR: This review focuses on the biological functions of three structural subgroups of mammalian defensins and the evidence for their involvement as effectors of antimicrobial innate immunity.
Abstract: Defensins are peptidic components of the innate immune system of plants and animals. In mammals, defensins have evolved to have a central function in the host defense properties of granulocytic leukocytes, mucosal surfaces, skin and other epithelia. This review focuses on the biological functions of three structural subgroups of mammalian defensins and the evidence for their involvement as effectors of antimicrobial innate immunity.

Journal ArticleDOI
TL;DR: The significance of type I interferons (IFN-α/β) in biology and medicine renders research on their activities continuously relevant to our understanding of normal and abnormal (auto) immune responses as mentioned in this paper.
Abstract: ▪ Abstract The significance of type I interferons (IFN-α/β) in biology and medicine renders research on their activities continuously relevant to our understanding of normal and abnormal (auto) immune responses. This relevance is bolstered by discoveries that unambiguously establish IFN-α/β, among the multitude of cytokines, as dominant in defining qualitative and quantitative characteristics of innate and adaptive immune processes. Recent advances elucidating the biology of these key cytokines include better definition of their complex signaling pathways, determination of their importance in modifying the effects of other cytokines, the role of Toll-like receptors in their induction, their major cellular producers, and their broad and diverse impact on both cellular and humoral immune responses. Consequently, the role of IFN-α/β in the pathogenesis of autoimmunity remains at the forefront of scientific inquiry and has begun to illuminate the mechanisms by which these molecules promote or inhibit systemic...

Journal ArticleDOI
TL;DR: A causal link between deficient interferon-β, impaired apoptosis and increased virus replication is demonstrated, suggesting a novel use for type I interferons in the treatment or prevention of virus-induced asthma exacerbations.
Abstract: Rhinoviruses are the major trigger of acute asthma exacerbations and asthmatic subjects are more susceptible to these infections. To investigate the underlying mechanisms of this increased susceptibility, we examined virus replication and innate responses to rhinovirus (RV)-16 infection of primary bronchial epithelial cells from asthmatic and healthy control subjects. Viral RNA expression and late virus release into supernatant was increased 50- and 7-fold, respectively in asthmatic cells compared with healthy controls. Virus infection induced late cell lysis in asthmatic cells but not in normal cells. Examination of the early cellular response to infection revealed impairment of virus induced caspase 3/7 activity and of apoptotic responses in the asthmatic cultures. Inhibition of apoptosis in normal cultures resulted in enhanced viral yield, comparable to that seen in infected asthmatic cultures. Examination of early innate immune responses revealed profound impairment of virus-induced interferon-beta mRNA expression in asthmatic cultures and they produced >2.5 times less interferon-beta protein. In infected asthmatic cells, exogenous interferon-beta induced apoptosis and reduced virus replication, demonstrating a causal link between deficient interferon-beta, impaired apoptosis and increased virus replication. These data suggest a novel use for type I interferons in the treatment or prevention of virus-induced asthma exacerbations.

Journal ArticleDOI
TL;DR: A 'combinatorial code' is identified by which DCs discriminate pathogens and suggest new strategies for promoting T helper type 1 responses.
Abstract: Toll-like receptors (TLRs) sense microbial products and initiate adaptive immune responses by activating dendritic cells (DCs). As pathogens may contain several TLR agonists, we sought to determine whether different TLRs cooperate in DC activation. In human and mouse DCs, TLR3 and TLR4 potently acted in synergy with TLR7, TLR8 and TLR9 in the induction of a selected set of genes. Synergic TLR stimulation increased production of interleukins 12 and 23 and increased the Delta-4/Jagged-1 ratio, leading to DCs with enhanced and sustained T helper type 1-polarizing capacity. Global gene transcriptional analysis showed that TLR synergy 'boosted' only approximately 1% of the transcripts induced by single TLR agonists. These results identify a 'combinatorial code' by which DCs discriminate pathogens and suggest new strategies for promoting T helper type 1 responses.

Journal ArticleDOI
TL;DR: Various situations in which the balance between natural Treg cells and effector immune functions influences the outcome of infection are described and how manipulating this equilibrium might be exploited therapeutically are described.
Abstract: This review discusses the control exerted by natural CD4+ CD25+ regulatory T cells (natural Treg cells) during infectious processes. Natural Treg cells may limit the magnitude of effector responses, which may result in failure to adequately control infection. However, natural Treg cells also help limit collateral tissue damage caused by vigorous antimicrobial immune responses. We describe here various situations in which the balance between natural Treg cells and effector immune functions influences the outcome of infection and discuss how manipulating this equilibrium might be exploited therapeutically.

Journal ArticleDOI
TL;DR: The activation of NKT cells paradoxically can lead either to suppression or stimulation of immune responses, and one cannot predict which will occur, and many investigators are hopeful that immune therapies can be developed based on NKT cell stimulation.
Abstract: Natural killer T (NKT) cells constitute a conserved T cell sublineage with unique properties, including reactivity for a synthetic glycolipid presented by CD1d, expression of an invariant T cell antigen receptor (TCR) alpha chain, and unusual requirements for thymic selection. They rapidly produce many cytokines after stimulation and thus influence diverse immune responses and pathogenic processes. Because of intensive research effort, we have learned much about factors promoting the development and survival of NKT cells, regulation of their cytokine production, and the means by which they influence dendritic cells and other cell types. Despite this progress, knowledge of the natural antigen(s) they recognize and their physiologic role remain incomplete. The activation of NKT cells paradoxically can lead either to suppression or stimulation of immune responses, and we cannot predict which will occur. Despite this uncertainty, many investigators are hopeful that immune therapies can be developed based on NKT cell stimulation.

Journal ArticleDOI
25 Mar 2005-Science
TL;DR: In both mouse and man, mutations in genes that control innate immune recognition, adaptive immunity, and epithelial permeability are all associated with gut inflammation, which suggests that perturbing homeostasis between gut antigens and host immunity represents a critical determinant in the development of gut inflammation and allergy.
Abstract: The gut immune system has the challenge of responding to pathogens while remaining relatively unresponsive to food antigens and the commensal microflora. In the developed world, this ability appears to be breaking down, with chronic inflammatory diseases of the gut commonplace in the apparent absence of overt infections. In both mouse and man, mutations in genes that control innate immune recognition, adaptive immunity, and epithelial permeability are all associated with gut inflammation. This suggests that perturbing homeostasis between gut antigens and host immunity represents a critical determinant in the development of gut inflammation and allergy.

Journal ArticleDOI
TL;DR: The results suggest that gemcitabine may be a practical strategy for the reduction of myeloid suppressor cells and should be evaluated in conjunction with a variety of immunotherapy approaches.
Abstract: Purpose: Myeloid suppressor (Gr-1+/CD11b+) cells accumulate in the spleens of tumor-bearing mice where they contribute to immunosuppression by inhibiting the function of CD8+ T cells and by promoting tumor angiogenesis. Elimination of these myeloid suppressor cells may thus significantly improve antitumor responses and enhance effects of cancer immunotherapy, although to date few practical options exist. Experimental Design: The effect of the chemotherapy drug gemcitabine on the number of (Gr-1+/CD11b+) cells in the spleens of animals bearing large tumors derived from five cancer lines grown in both C57Bl/6 and BALB/c mice was analyzed. Suppressive activity of splenocytes from gemcitabine-treated and control animals was measured in natural killer (NK) cell lysis and Winn assays. The impact of myeloid suppressor cell activity was determined in an immunogene therapy model using an adenovirus expressing IFN-β. Results: This study shows that the chemotherapeutic drug gemcitabine, given at a dose similar to the equivalent dose used in patients, was able to dramatically and specifically reduce the number of myeloid suppressor cells found in the spleens of animals bearing large tumors with no significant reductions in CD4+ T cells, CD8+ T cells, NK cells, macrophages, or B cells. The loss of myeloid suppressor cells was accompanied by an increase in the antitumor activity of CD8+ T cells and activated NK cells. Combining gemcitabine with cytokine immunogene therapy using IFN-β markedly enhanced antitumor efficacy. Conclusions: These results suggest that gemcitabine may be a practical strategy for the reduction of myeloid suppressor cells and should be evaluated in conjunction with a variety of immunotherapy approaches.

Journal ArticleDOI
TL;DR: It is shown that DAB(389)IL-2 is capable of selectively eliminating CD25-expressing Tregs from the PBMCs of cancer patients without inducing toxicity on other cellular subsets with intermediate or low expression of CD25.
Abstract: In this study, we investigated whether elimination of CD4+/CD25+ Tregs using the recombinant IL-2 diphtheria toxin conjugate DAB(389)IL-2 (also known as denileukin diftitox and ONTAK) is capable of enhancing the immunostimulatory efficacy of tumor RNA-transfected DC vaccines. We show that DAB(389)IL-2 is capable of selectively eliminating CD25-expressing Tregs from the PBMCs of cancer patients without inducing toxicity on other cellular subsets with intermediate or low expression of CD25. DAB(389)IL-2-mediated Treg depletion resulted in enhanced stimulation of proliferative and cytotoxic T cell responses in vitro but only when DAB(389)IL-2 was omitted during T cell priming. DAB(389)IL-2 significantly reduced the number of Tregs present in the peripheral blood of metastatic renal cell carcinoma (RCC) patients and abrogated Treg-mediated immunosuppressive activity in vivo. Moreover, DAB(389)IL-2-mediated elimination of Tregs followed by vaccination with RNA-transfected DCs significantly improved the stimulation of tumor-specific T cell responses in RCC patients when compared with vaccination alone. Our findings may have implications in the design of immune-based strategies that may incorporate the Treg depletion strategy to achieve potent antitumor immunity with therapeutic impact.