scispace - formally typeset
Search or ask a question

Showing papers on "Immune tolerance published in 2019"


Journal ArticleDOI
TL;DR: Novel insights are discussed into the roles of Treg cells in cancer, which can hopefully be used to develop Treg cell-targeted therapies and facilitate immune precision medicine.
Abstract: Regulatory T (Treg) cells, an immunosuppressive subset of CD4+ T cells characterized by the expression of the master transcription factor forkhead box protein P3 (FOXP3), are a component of the immune system with essential roles in maintaining self-tolerance. In addition, Treg cells can suppress anticancer immunity, thereby hindering protective immunosurveillance of neoplasia and hampering effective antitumour immune responses in tumour-bearing hosts, thus promoting tumour development and progression. Identification of the factors that are specifically expressed in Treg cells and/or that influence Treg cell homeostasis and function is important to understanding cancer pathogenesis and to identifying therapeutic targets. Immune-checkpoint inhibitors (ICIs) have provided a paradigm shift in the treatment of cancer. Most immune-checkpoint molecules are expressed in Treg cells, but the effects of ICIs on Treg cells, and thus the contributions of these cells to treatment responses, remain unclear. Notably, evidence indicates that ICIs targeting programmed cell death 1 (PD-1) might enhance the immunosuppressive function of Treg cells, whereas cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitors might deplete these cells. Thus, although manipulation of Treg cells is a promising anticancer therapeutic strategy, approaches to controlling these cells require further research. Herein, we discuss novel insights into the roles of Treg cells in cancer, which can hopefully be used to develop Treg cell-targeted therapies and facilitate immune precision medicine. Regulatory T (Treg) cells are implicated in cancer immune evasion and escape and thus contribute to tumour development and progression. In this Review, the authors provide an overview of the phenotypes and roles of Treg cells in the context of cancer and outline potential strategies to target this cell type in anticancer immunotherapy.

717 citations


Journal ArticleDOI
TL;DR: Overall, the evidence accumulated to date suggests that induction of PD-L1 by inflammatory factors in the tumor microenvironment may be one of the most important factors affecting the therapeutic efficiency of PD -L1/PD-1 blocking.
Abstract: Tumor immune escape is an important strategy of tumor survival. There are many mechanisms of tumor immune escape, including immunosuppression, which has become a research hotspot in recent years. The programmed death ligand-1/programmed death-1 (PD-L1/PD-1) signaling pathway is an important component of tumor immunosuppression, which can inhibit the activation of T lymphocytes and enhance the immune tolerance of tumor cells, thereby achieving tumor immune escape. Therefore, targeting the PD-L1/PD-1 pathway is an attractive strategy for cancer treatment; however, the therapeutic effectiveness of PD-L1/PD-1 remains poor. This situation requires gaining a deeper understanding of the complex and varied molecular mechanisms and factors driving the expression and activation of the PD-L1/PD-1 signaling pathway. In this review, we summarize the regulation mechanisms of the PD-L1/PD-1 signaling pathway in the tumor microenvironment and their roles in mediating tumor escape. Overall, the evidence accumulated to date suggests that induction of PD-L1 by inflammatory factors in the tumor microenvironment may be one of the most important factors affecting the therapeutic efficiency of PD-L1/PD-1 blocking.

676 citations


Journal ArticleDOI
16 May 2019-Cell
TL;DR: This large-scale, single-cell atlas deepens the understanding of breast tumor ecosystems and suggests that ecosystem-based patient classification will facilitate identification of individuals for precision medicine approaches targeting the tumor and its immunoenvironment.

470 citations


Journal ArticleDOI
TL;DR: The current state of knowledge on the origin and function of MDSCs in cancer is analyzed, with a special emphasis on the immunosuppressive pathways pursued by M DSCs to inhibit T cell functions, resulting in tumour progression.
Abstract: Under steady-state conditions, bone marrow-derived immature myeloid cells (IMC) differentiate into granulocytes, macrophages and dendritic cells (DCs). This differentiation is impaired under chronic inflammatory conditions, which are typical for tumour progression, leading to the accumulation of IMCs. These cells are capable of inducing strong immunosuppressive effects through the expression of various cytokines and immune regulatory molecules, inhibition of lymphocyte homing, stimulation of other immunosuppressive cells, depletion of metabolites critical for T cell functions, expression of ectoenzymes regulating adenosine metabolism, and the production of reactive species. IMCs are therefore designated as myeloid-derived suppressor cells (MDSCs), and have been shown to accumulate in tumour-bearing mice and cancer patients. MDSCs are considered to be a strong contributor to the immunosuppressive tumour microenvironment and thus an obstacle for many cancer immunotherapies. Consequently, numerous studies are focused on the characterisation of MDSC origin and their relationship to other myeloid cell populations, their immunosuppressive capacity, and possible ways to inhibit MDSC function with different approaches being evaluated in clinical trials. This review analyses the current state of knowledge on the origin and function of MDSCs in cancer, with a special emphasis on the immunosuppressive pathways pursued by MDSCs to inhibit T cell functions, resulting in tumour progression. In addition, we describe therapeutic strategies and clinical benefits of MDSC targeting in cancer.

420 citations


Journal ArticleDOI
10 Jan 2019-Nature
TL;DR: It is shown that there is massive accumulation of Treg cells in the mouse brain after ischaemic stroke, and this potentiates neurological recovery during the chronic phase of ischaemia brain injury.
Abstract: In addition to maintaining immune tolerance, FOXP3+ regulatory T (Treg) cells perform specialized functions in tissue homeostasis and remodelling1,2. However, the characteristics and functions of brain Treg cells are not well understood because there is a low number of Treg cells in the brain under normal conditions. Here we show that there is massive accumulation of Treg cells in the mouse brain after ischaemic stroke, and this potentiates neurological recovery during the chronic phase of ischaemic brain injury. Although brain Treg cells are similar to Treg cells in other tissues such as visceral adipose tissue and muscle3–5, they are apparently distinct and express unique genes related to the nervous system including Htr7, which encodes the serotonin receptor 5-HT7. The amplification of brain Treg cells is dependent on interleukin (IL)-2, IL-33, serotonin and T cell receptor recognition, and infiltration into the brain is driven by the chemokines CCL1 and CCL20. Brain Treg cells suppress neurotoxic astrogliosis by producing amphiregulin, a low-affinity epidermal growth factor receptor (EGFR) ligand. Stroke is a leading cause of neurological disability, and there are currently few effective recovery methods other than rehabilitation during the chronic phase. Our findings suggest that Treg cells and their products may provide therapeutic opportunities for neuronal protection against stroke and neuroinflammatory diseases. In a mouse model of ischaemic stroke, regulatory T cells infiltrate the injured brain in response to the chemokines CCL1 and CCL20 and suppress excessive astrogliosis via the production of amphiregulin.

391 citations


Journal ArticleDOI
TL;DR: The concept of using CAR T cells to break immunological tolerance to tumors is introduced, several challenges in the field are highlighted, the utility of biomarkers in the context of predicting clinical responses are discussed, and prospects for developing next‐generation CAR T cell‐based approaches that will improve outcome are offered.
Abstract: Chimeric antigen receptor (CAR) T-cell therapy represents a major advancement in personalized cancer treatment. In this strategy, a patient's own T cells are genetically engineered to express a synthetic receptor that binds a tumor antigen. CAR T cells are then expanded for clinical use and infused back into the patient's body to attack and destroy chemotherapy-resistant cancer. Dramatic clinical responses and high rates of complete remission have been observed in the setting of CAR T-cell therapy of B-cell malignancies. This resulted in two recent FDA approvals of CAR T cells directed against the CD19 protein for treatment of acute lymphoblastic leukemia and diffuse large B-cell lymphoma. Thus, CAR T cells are arguably one of the first successful examples of synthetic biology and personalized cellular cancer therapy to become commercially available. In this review, we introduce the concept of using CAR T cells to break immunological tolerance to tumors, highlight several challenges in the field, discuss the utility of biomarkers in the context of predicting clinical responses, and offer prospects for developing next-generation CAR T cell-based approaches that will improve outcome.

291 citations


Journal ArticleDOI
TL;DR: This review will present general aspects of the DC physiology and classification and will address their potential and actual uses in the management of human disease, more specifically cancer, as therapeutic and monitoring tools.
Abstract: Dendritic cells (DC) are professional antigen presenting cells, uniquely able to induce naive T cell activation and effector differentiation. They are, likewise, involved in the induction and maintenance of immune tolerance in homeostatic conditions. Their phenotypic and functional heterogeneity points to their great plasticity and ability to modulate, according to their microenvironment, the acquired immune response and, at the same time, makes their precise classification complex and frequently subject to reviews and improvement. This review will present general aspects of the DC physiology and classification and will address their potential and actual uses in the management of human disease, more specifically cancer, as therapeutic and monitoring tools. New combination treatments with the participation of DC will be also discussed.

211 citations


Journal ArticleDOI
TL;DR: The role of itaconate was validated by IRG1 and SDH polymorphisms that modulate induction of tolerance and trained immunity in human monocytes, and the potential of β-glucan-induced trained immunity to revert immunoparalysis was highlighted.

201 citations


Journal ArticleDOI
TL;DR: This review examines the emerging knowledge of Treg interaction with dendritic cells, macrophages, neutrophils, and γδ T cells and highlights this interaction as an important link between innate and adaptive immune systems which also indicate the far-reaching role of T Regs in the regulation of immune responses and maintenance of self-tolerance and immune homeostasis.
Abstract: The distinction between innate and adaptive immunity is one of the basic tenets of immunology. The co-operation between these two arms of the immune system is a major determinant of the resistance or susceptibility of the host following pathogen invasion. Hence, this interactive co-operation between cells of the innate and adaptive immunity is of significant interest to immunologists. The sub-population of CD4+ T cells with regulatory phenotype (regulatory T cells; Tregs), which constitute a part of the adaptive immune system, have been widely implicated in the regulation of the immune system and maintenance of immune homeostasis. In the last two decades, there has been an explosion in research describing the role of Tregs and their relevance in several immunopathologies ranging from inflammation to cancer. The majority of these studies focus on the role of Tregs on the cells of the adaptive immune system. Recently, there is significant interest in the role of Tregs on cells of the innate immune system. In this review, we examine the literature on the role of Tregs in immunology. Specifically, we focus on the emerging knowledge of Treg interaction with dendritic cells, macrophages, neutrophils, and γδ T cells. We highlight this interaction as an important link between innate and adaptive immune systems which also indicate the far-reaching role of Tregs in the regulation of immune responses and maintenance of self-tolerance and immune homeostasis.

160 citations


Journal ArticleDOI
TL;DR: An overview on the structure, regulation, ligands, functions, and clinical trials of CD36 in cancer is provided.
Abstract: CD36, a scavenger receptor expressed in multiple cell types, mediates lipid uptake, immunological recognition, inflammation, molecular adhesion, and apoptosis. CD36 is a transmembrane glycoprotein that contains several posttranslational modification sites and binds to diverse ligands, including apoptotic cells, thrombospondin-1 (TSP-1), and fatty acids (FAs). Beyond fueling tumor metastasis and therapy resistance by enhancing lipid uptake and FA oxidation, CD36 attenuates angiogenesis by binding to TSP-1 and thereby inducing apoptosis or blocking the vascular endothelial growth factor receptor 2 pathway in tumor microvascular endothelial cells. Moreover, CD36-driven lipid metabolic reprogramming and functions in tumor-associated immune cells lead to tumor immune tolerance and cancer development. Notable advances have been made in demonstrating the regulatory networks that govern distinct physiological properties of CD36, and this has identified targeting CD36 as a potential strategy for cancer treatment. Here, we provide an overview on the structure, regulation, ligands, functions, and clinical trials of CD36 in cancer.

154 citations


Journal ArticleDOI
TL;DR: A TFR cell-deleter mouse is developed that allows specific temporal deletion and show that TFR cells primarily control early but not late GC responses, and exert critical immunoregulatory functions before GC formation.
Abstract: Follicular regulatory T (TFR) cells have specialized roles in modulating follicular helper T (TFH) cell activation of B cells. However, the precise role of TFR cells in controlling antibody responses to foreign antigens and autoantigens in vivo is still unclear due to a lack of specific tools. A TFR cell-deleter mouse was developed that selectively deletes TFR cells, facilitating temporal studies. TFR cells were found to regulate early, but not late, germinal center (GC) responses to control antigen-specific antibody and B cell memory. Deletion of TFR cells also resulted in increased self-reactive immunoglobulin (Ig) G and IgE. The increased IgE levels led us to interrogate the role of TFR cells in house dust mite models. TFR cells were found to control TFH13 cell-induced IgE. In vivo, loss of TFR cells increased house-dust-mite-specific IgE and lung inflammation. Thus, TFR cells control IgG and IgE responses to vaccines, allergens and autoantigens, and exert critical immunoregulatory functions before GC formation.

Journal ArticleDOI
TL;DR: Evidence is provided that the immunosuppressive phenotype of TAMs is controlled by long‐chain fatty acid metabolism, specifically unsaturated fatty acids, here exemplified by oleate, which reveals an alternative therapeutic strategy by targeting the pro‐tumoral myeloid cells on a metabolic level.
Abstract: Tumor-associated macrophages (TAMs) promote tumor growth and metastasis by suppressing tumor immune surveillance. Herein, we provide evidence that the immunosuppressive phenotype of TAMs is controlled by long-chain fatty acid metabolism, specifically unsaturated fatty acids, here exemplified by oleate. Consequently, en-route enriched lipid droplets were identified as essential organelles, which represent effective targets for chemical inhibitors to block in vitro polarization of TAMs and tumor growth in vivo. In line, analysis of human tumors revealed that myeloid cells infiltrating colon cancer but not gastric cancer tissue indeed accumulate lipid droplets. Mechanistically, our data indicate that oleate-induced polarization of myeloid cells depends on the mammalian target of the rapamycin pathway. Thus, our findings reveal an alternative therapeutic strategy by targeting the pro-tumoral myeloid cells on a metabolic level.

Journal ArticleDOI
TL;DR: The present review gives a brief overview of the immune components of osteosarcoma and their most recent therapeutic interests.

Journal ArticleDOI
TL;DR: The data indicate that elevated 12,13-diHOME concentrations impede immune tolerance and may be produced by bacterial EHs in the neonatal gut, offering a mechanistic link between perturbation of the gut microbiome during early life and atopy and asthma during childhood.
Abstract: Neonates at risk of childhood atopy and asthma exhibit perturbation of the gut microbiome, metabolic dysfunction and increased concentrations of 12,13-diHOME in their faeces. However, the mechanism, source and contribution of this lipid to allergic inflammation remain unknown. Here, we show that intra-abdominal treatment of mice with 12,13-diHOME increased pulmonary inflammation and decreased the number of regulatory T (Treg) cells in the lungs. Treatment of human dendritic cells with 12,13-diHOME altered expression of PPARγ-regulated genes and reduced anti-inflammatory cytokine secretion and the number of Treg cells in vitro. Shotgun metagenomic sequencing of neonatal faeces indicated that bacterial epoxide hydrolase (EH) genes are more abundant in the gut microbiome of neonates who develop atopy and/or asthma during childhood. Three of these bacterial EH genes (3EH) specifically produce 12,13-diHOME, and treatment of mice with bacterial strains expressing 3EH caused a decrease in the number of lung Treg cells in an allergen challenge model. In two small birth cohorts, an increase in the copy number of 3EH or the concentration of 12,13-diHOME in the faeces of neonates was found to be associated with an increased probability of developing atopy, eczema or asthma during childhood. Our data indicate that elevated 12,13-diHOME concentrations impede immune tolerance and may be produced by bacterial EHs in the neonatal gut, offering a mechanistic link between perturbation of the gut microbiome during early life and atopy and asthma during childhood.

Journal ArticleDOI
TL;DR: Based on the progression, the potential of immune-based therapies and their challenges in the treatment of HBV-related HCC, including the checkpoint inhibition, genetically modified T cell transfer, therapeutic vaccines and metabolic modulation are discussed.
Abstract: Chronic hepatitis B virus (HBV) infection is one of the high-risk factors for human HCC. Despite the integration of virus DNA and the oncoprotein HBx, chronic necroinflammation and hepatocellular regeneration account for hepatocarcinogenesis. As a non-cytopathic virus, HBV is extensively recognized to mediate chronic liver damage through abnormal immune attack. However, the mechanisms driving HBV infection to HCC are poorly understood. During chronic HBV infection in humans, the adaptive immunity changes from immune tolerance to progressive immune activation, inactivation, reactivation and exhaustion, all of which may be the immune pathogenic factors for the development of HCC. Recently, the immunopathogenic mechanisms were described in mouse HBV-induced HCC models, which is absolutely dependent on the presence of HBV-specific T cell response and NK cell-derived IFN-γ, findings which are consistent with the observations from CHB and HCC patients. In this review, we summarize recent research progression on the HBV-specific CD8+ T cells, and also CD4+ T cells, B cells and non-specific immune cells and molecules underlying chronic HBV infection and eventual HCC development to demonstrate the pathogenesis of HBV-induced immune imbalance. Based on the progression, we discussed the potential of immune-based therapies and their challenges in the treatment of HBV-related HCC, including the checkpoint inhibition, genetically modified T cell transfer, therapeutic vaccines and metabolic modulation.

Journal ArticleDOI
TL;DR: It is shown that in the synovium, neutrophils interact with resident fibroblast-like synoviocytes to endow them with antigen-presenting cell capabilities and an inflammatory phenotype, and their ability to extrude neutrophil extracellular traps has recently been implicated in the development of ACPAs.

Journal ArticleDOI
10 Oct 2019-Nature
TL;DR: It is shown that priming by Kupffer cells, which is not natural targets of hepatitis B, leads to differentiation of CD8+ T cells into effector cells that form dense, extravascular clusters of immotile cells scattered throughout the liver.
Abstract: The responses of CD8+ T cells to hepatotropic viruses such as hepatitis B range from dysfunction to differentiation into effector cells, but the mechanisms that underlie these distinct outcomes remain poorly understood. Here we show that priming by Kupffer cells, which are not natural targets of hepatitis B, leads to differentiation of CD8+ T cells into effector cells that form dense, extravascular clusters of immotile cells scattered throughout the liver. By contrast, priming by hepatocytes, which are natural targets of hepatitis B, leads to local activation and proliferation of CD8+ T cells but not to differentiation into effector cells; these cells form loose, intravascular clusters of motile cells that coalesce around portal tracts. Transcriptomic and chromatin accessibility analyses reveal unique features of these dysfunctional CD8+ T cells, with limited overlap with those of exhausted or tolerant T cells; accordingly, CD8+ T cells primed by hepatocytes cannot be rescued by treatment with anti-PD-L1, but instead respond to IL-2. These findings suggest immunotherapeutic strategies against chronic hepatitis B infection.

Journal ArticleDOI
15 May 2019-Nature
TL;DR: It is demonstrated that partial disruption of the CBM complex and induction of IFNγ secretion in the preferentially self-reactive Treg cell pool does not cause systemic autoimmunity but is sufficient to prime the tumour environment for successful immune checkpoint therapy.
Abstract: Solid tumours are infiltrated by effector T cells with the potential to control or reject them, as well as by regulatory T (Treg) cells that restrict the function of effector T cells and thereby promote tumour growth1. The anti-tumour activity of effector T cells can be therapeutically unleashed, and is now being exploited for the treatment of some forms of human cancer. However, weak tumour-associated inflammatory responses and the immune-suppressive function of Treg cells remain major hurdles to broader effectiveness of tumour immunotherapy2. Here we show that, after disruption of the CARMA1-BCL10-MALT1 (CBM) signalosome complex, most tumour-infiltrating Treg cells produce IFNγ, resulting in stunted tumour growth. Notably, genetic deletion of both or even just one allele of CARMA1 (also known as Card11) in only a fraction of Treg cells-which avoided systemic autoimmunity-was sufficient to produce this anti-tumour effect, showing that it is not the mere loss of suppressive function but the gain of effector activity by Treg cells that initiates tumour control. The production of IFNγ by Treg cells was accompanied by activation of macrophages and upregulation of class I molecules of the major histocompatibility complex on tumour cells. However, tumour cells also upregulated the expression of PD-L1, which indicates activation of adaptive immune resistance3. Consequently, blockade of PD-1 together with CARMA1 deletion caused rejection of tumours that otherwise do not respond to anti-PD-1 monotherapy. This effect was reproduced by pharmacological inhibition of the CBM protein MALT1. Our results demonstrate that partial disruption of the CBM complex and induction of IFNγ secretion in the preferentially self-reactive Treg cell pool does not cause systemic autoimmunity but is sufficient to prime the tumour environment for successful immune checkpoint therapy.

Journal ArticleDOI
TL;DR: This review focuses on the mechanisms involved in hepatic adaptive immune tolerance, the liver diseases caused thereby, and the therapeutic strategies needed to overcome this tolerance.
Abstract: The liver is an immunologically-tolerant organ, equipped with the unique property of limiting hypersensitivity to food-derived antigens and bacterial products through the portal vein, and feasibly accepting liver allografts. The adaptive immune response is a major branch of the immune system that is responsible for inducing organ/tissue-localized and systematic responses against pathogens and tumors, while promoting self-tolerance. It has previously been reported that persistent liver infection with a virus or another pathogen typically results in liver tolerance, a unique feature of the liver. Due to the liver’s immunosuppressive microenvironment, hepatic adaptive immune cells become readily tolerogenic, promoting the death of effector cells and the ‘education’ of regulatory cells. The above mechanisms may result in the clonal deletion, exhaustion, or inhibition of peripheral T cells, which are key players in the adaptive immune response. It is believed that these tolerance mechanisms are responsible for almost all liver diseases. However, liver-mediated T cell dysfunction can be reversed through checkpoint immunotherapy or the modulation of hepatic innate immune cells. In this review, we focus on the mechanisms involved in hepatic adaptive immune tolerance, the liver diseases that arise as a result of this tolerance and how it can be overcome by therapeutic intervention. (200 words)

Journal ArticleDOI
21 Jan 2019-Oncogene
TL;DR: It is demonstrated that in a prostate cancer model lactate released by glycolytic cancer-associated fibroblasts (CAFs) acts on CD4+ T cells, shaping T-cell polarization, and exerts a pro-invasive effect on prostate cancer cells, by activating a previously unexplored miR21/TLR8 axis that sustains cancer malignancy.
Abstract: Leukocyte infiltration plays an active role in controlling tumor development. In the early stages of carcinogenesis, T cells counteract tumor growth. However, in advanced stages, cancer cells and infiltrating stromal components interfere with the immune control and instruct immune cells to support, rather than counteract, tumor malignancy, via cell-cell contact or soluble mediators. In particular, metabolites are emerging as active players in driving immunosuppression. Here we demonstrate that in a prostate cancer model lactate released by glycolytic cancer-associated fibroblasts (CAFs) acts on CD4+ T cells, shaping T-cell polarization. In particular, CAFs exposure (i) reduces the percentage of the antitumoral Th1 subset, inducing a lactate-dependent, SIRT1-mediated deacetylation/degradation of T-bet transcription factor; (ii) increases Treg cells, driving naive T cells polarization, through a lactate-based NF-kB activation and FoxP3 expression. In turn, this metabolic-based CAF-immunomodulated environment exerts a pro-invasive effect on prostate cancer cells, by activating a previously unexplored miR21/TLR8 axis that sustains cancer malignancy.

Journal ArticleDOI
TL;DR: Three distinct decidual CD4+ Treg types are investigated in healthy pregnancies with a regulatory phenotype and the ability to suppress T cell responses: CD25HIFOXP3+, PD1HIIL-10+, and TIGIT+FOXP3dim to allow for the modulation of a variety of inflammatory responses in the placenta.

Journal ArticleDOI
TL;DR: It is demonstrated that increasing the number of cytotoxic Tim-3+CD8+ T cells can promote effective anti-tumor immunity and implicate PTPN2 in immune cells as an attractive cancer immunotherapy target.
Abstract: CD8+ T cell exhaustion is a state of dysfunction acquired in chronic viral infection and cancer, characterized by the formation of Slamf6+ progenitor exhausted and Tim-3+ terminally exhausted subpopulations through unknown mechanisms. Here we establish the phosphatase PTPN2 as a new regulator of the differentiation of the terminally exhausted subpopulation that functions by attenuating type 1 interferon signaling. Deletion of Ptpn2 in CD8+ T cells increased the generation, proliferative capacity and cytotoxicity of Tim-3+ cells without altering Slamf6+ numbers during lymphocytic choriomeningitis virus clone 13 infection. Likewise, Ptpn2 deletion in CD8+ T cells enhanced Tim-3+ anti-tumor responses and improved tumor control. Deletion of Ptpn2 throughout the immune system resulted in MC38 tumor clearance and improved programmed cell death-1 checkpoint blockade responses to B16 tumors. Our results indicate that increasing the number of cytotoxic Tim-3+CD8+ T cells can promote effective anti-tumor immunity and implicate PTPN2 in immune cells as an attractive cancer immunotherapy target.

Journal ArticleDOI
TL;DR: This review summarizes recent advances in Treg cell biology and discusses the role of Foxp3 as a transcriptional modulator and metabolic gatekeeper essential to an effective immune regulatory response in the context of human inborn errors of immune dysregulation.
Abstract: Regulatory T (Treg) cells expressing the transcription factor forkhead box P3 (Foxp3) play a requisite role in the maintenance of immunological homeostasis and prevention of peripheral self-tolerance breakdown. Although Foxp3 by itself is neither necessary nor sufficient to specify many aspects of the Treg cell phenotype, its sustained expression in Treg cells is indispensable for their phenotypic stability, metabolic fitness, and regulatory function. In this review, we summarize recent advances in Treg cell biology, with a particular emphasis on the role of Foxp3 as a transcriptional modulator and metabolic gatekeeper essential to an effective immune regulatory response. We discuss these findings in the context of human inborn errors of immune dysregulation, with a focus on FOXP3 mutations, leading to Treg cell deficiency. We also highlight emerging concepts of therapeutic Treg cell reprogramming to restore tolerance in the settings of immune dysregulatory disorders.

Journal ArticleDOI
TL;DR: This review emphasizes recent attempts to remodel the tumor immune microenvironment using novel nanoparticles, which include specifically eliminating immunosuppressive cells, reprogramming immune regulatory cells, promoting inflammatory cytokines and blocking immune checkpoints.
Abstract: Owing to the fast-paced growth and cross-infiltration of oncology, immunology and molecular biology, tumor immunotherapy technology represented by immune checkpoint blockade and chimeric antigen receptor (CAR) T cell therapy has lately made remarkable advancements. In comparison with traditional chemotherapy, immunotherapy has the potential to elicit a stronger sustained antitumor immune response in those patients who have advanced malignant malignancies. In spite of the advancements made, a significant number of clinical research works have validated that an extensive proportion of cancer patients still manifest insensitivity to immunotherapy, primarily because of the immunomodulatory interactions between tumor cells and the immunosuppressive tumor microenvironment (TME), together mediating the immune tolerance of tumors and accordingly impacting the positive response to immunotherapy. The intricate immunosuppressive networks formed by stromal cells, inflammatory cells, vasculature, extracellular matrix (ECM), and their secreted cytokines in the TME, play a pivotal role in tumor immune escape. Specific blocking of inhibition pathways in the TME is expected to effectively prevent immune escape and tolerance of tumor cells in addition to their metastasis, accordingly improving the antitumor immune response at various phases of tumor growth. Emerging nanoscale targeted drug carriers truly suit this specific requirement due to their specificity, biocompatibility, and convenience of production. This review emphasizes recent attempts to remodel the tumor immune microenvironment using novel nanoparticles, which include specifically eliminating immunosuppressive cells, reprogramming immune regulatory cells, promoting inflammatory cytokines and blocking immune checkpoints. Targeted remodeling of the immunosuppressive TME using well-designed and fabricated nanoparticles provides a promising strategy for improving the effectiveness of current immunotherapy and is greatly significant.

Journal ArticleDOI
TL;DR: Understanding metabolic regulation of Treg cells should provide new insight into immune homeostasis and disease, with important therapeutic implications for autoimmunity, cancer, and other immune-mediated disorders.
Abstract: Regulatory T (Treg) cells are crucial for peripheral immune tolerance and prevention of autoimmunity and tissue damage. Treg cells are inherently defined by the expression of the transcription factor Foxp3, which enforces lineage development and immune suppressive function of these cells. Under various conditions as observed in autoimmunity, cancer and non-lymphoid tissues, a proportion of Treg cells respond to specific environmental signals and display altered stability, plasticity and tissue-specific heterogeneity, which further shape their context-dependent suppressive functions. Recent studies have revealed that metabolic programs play pivotal roles in controlling these processes in Treg cells, thereby considerably expanding our understanding of Treg cell biology. Here we summarize these recent advances that highlight how cell-extrinsic factors, such as nutrients, vitamins and metabolites, and cell-intrinsic metabolic programs, orchestrate Treg cell stability, plasticity, and tissue-specific heterogeneity. Understanding metabolic regulation of Treg cells should provide new insight into immune homeostasis and disease, with important therapeutic implications for autoimmunity, cancer, and other immune-mediated disorders.

Journal ArticleDOI
TL;DR: The results demonstrate that a TSG-6-mediated paracrine effect, reinforced by cell-to-cell contact between MSCs and proinflammatory macrophages, is involved in the mechanism of MSC-mediated abortion relief through the induction of immune tolerance.
Abstract: Mesenchymal stem cells (MSCs), which are pluripotent cells with immunomodulatory properties, have been considered good candidates for the therapy of several immune disorders, such as inflammatory bowel diseases, concanavalin A-induced liver injury, and graft-versus-host disease. The embryo is a natural allograft to the maternal immune system. A successful pregnancy depends on the timely extinction of the inflammatory response induced by embryo implantation, followed by the switch to a tolerant immune microenvironment in both the uterus and the system. Excessive infiltration of immune cells and serious inflammatory responses are triggers for embryo rejection, which results in miscarriage. Here, we demonstrated that adoptive transfer of MSCs could prevent fetal loss in a lipopolysaccharide (LPS)-induced abortion model and immune response-mediated spontaneous abortion model. The immunosuppressive MSCs alleviated excessive inflammation by inhibiting CD4 + T cell proliferation and promoting the decidual macrophage switch to M2 in a tumor necrosis factor-stimulated gene-6 (TSG-6)-dependent manner. Cell-to-cell contact with proinflammatory macrophages increased the TSG-6 production by the MSCs, thereby enhancing the suppressive regulation of T cells and macrophages. Moreover, proinflammatory macrophages in contact with the MSCs upregulated the expression of CD200 on the stem cells and facilitated the reprogramming of macrophages towards an anti-inflammatory skew through the interaction of CD200 with CD200R on proinflammatory macrophages. Therefore, the results demonstrate that a TSG-6-mediated paracrine effect, reinforced by cell-to-cell contact between MSCs and proinflammatory macrophages, is involved in the mechanism of MSC-mediated abortion relief through the induction of immune tolerance. Our study also indicates the potential application of MSCs in clinical recurrent miscarriages.

Journal ArticleDOI
19 Feb 2019-Immunity
TL;DR: During viral infection, liver‐resident NK (LrNK) cells inhibit the function of hepatic T cells via PD‐1‐PD‐L1 interactions, which reveals a role for LrNK cells in the regulation of T cell immunity and provides insight into the mechanisms of immune tolerance in the liver.

Journal ArticleDOI
TL;DR: A novel mechanism by which metabolic switching links immune activation responses to immune tolerance in the tumor milieu is unveiled, identifying potential targets for future immune-based anti-cancer therapies.

Journal ArticleDOI
TL;DR: This work uncovered the role of B cells in GBM physiopathology and provides a mechanism by which the GBM microenvironment controls B cell–mediated immunosuppression.
Abstract: The potent immunosuppression induced by glioblastoma (GBM) is one of the primary obstacles to finding effective immunotherapies. One hallmark of the GBM-associated immunosuppressive landscape is the massive infiltration of myeloid-derived suppressor cells (MDSC) and, to a lesser extent, regulatory T cells (Treg) within the tumor microenvironment. Here, we showed that regulatory B cells (Breg) are a prominent feature of the GBM microenvironment in both preclinical models and clinical samples. Forty percent of GBM patients (n = 60) scored positive for B-cell tumor infiltration. Human and mouse GBM-associated Bregs were characterized by immunosuppressive activity toward activated CD8+ T cells, the overexpression of inhibitory molecules PD-L1 and CD155, and production of immunosuppressive cytokines TGFβ and IL10. Local delivery of B cell-depleting anti-CD20 immunotherapy improved overall survival of animals (IgG vs. anti-CD20 mean survival: 18.5 vs. 33 days, P = 0.0001), suggesting a potential role of Bregs in GBM progression. We unveiled that GBM-associated MDSCs promoted regulatory B-cell function by delivering microvesicles transporting membrane-bound PD-L1, able to be up-taken by tumoral B cells. The transfer of functional PD-L1 via microvesicles conferred Bregs the potential to suppress CD8+ T-cell activation and acquisition of an effector phenotype. This work uncovered the role of B cells in GBM physiopathology and provides a mechanism by which the GBM microenvironment controls B cell-mediated immunosuppression.See related Spotlight on p. 1902.

Journal ArticleDOI
TL;DR: To fully exploit the potential of NK–based checkpoint immunotherapy, more understanding of the regional features of NK cells in the tumor microenvironment is required and will provide valuable information regarding the dynamic nature of NK cell immune response against tumors.
Abstract: NK cells play important roles in the innate immune responses against tumors. The effector function of NK cells relies on the integration of activating and inhibitory signals. Emerging checkpoint receptors and molecules are being revealed to mediate NK cell dysfunction in the tumor microenvironment. Inhibition of some NK cell surface checkpoint receptors has displayed the potential to reverse NK cell dysfunction in tumors, and to boost anti-tumor immunity, both in clinical trials (anti-KIR and anti-NKG2A), and in preclinical studies (e.g. anti-TIGIT, and anti-CD96). To fully exploit the potential of NK–based checkpoint immunotherapy, more understanding of the regional features of NK cells in the tumor microenvironment is required. This will provide valuable information regarding the dynamic nature of NK cell immune response against tumors, as well as novel checkpoints or pathways to be targeted. In this Review, we discuss recent advances in the understanding of NK cell dysfunction in tumors, as well as emerging strategies of NK –based checkpoint immunotherapy for tumors.