scispace - formally typeset
Search or ask a question

Showing papers by "Shizuo Akira published in 2011"


Journal ArticleDOI
27 May 2011-Immunity
TL;DR: The role played by TLRs in mounting protective immune responses against infection and their crosstalk with other PRRs with respect to pathogen recognition is focused on.

3,113 citations


Journal ArticleDOI
TL;DR: In this review, a comprehensively review the recent progress in the field of PAMP recognition by PRRs and the signaling pathways activated byPRRs.
Abstract: Microbial infection initiates complex interactions between the pathogen and the host. Pathogens express several signature molecules, known as pathogen-associated molecular patterns (PAMPs), which are essential for survival and pathogenicity. PAMPs are sensed by evolutionarily conserved, germline-encoded host sensors known as pathogen recognition receptors (PRRs). Recognition of PAMPs by PRRs rapidly triggers an array of anti-microbial immune responses through the induction of various inflammatory cytokines, chemokines and type I interferons. These responses also initiate the development of pathogen-specific, long-lasting adaptive immunity through B and T lymphocytes. Several families of PRRs, including Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), NOD-like receptors (NLRs), and DNA receptors (cytosolic sensors for DNA), are known to play a crucial role in host defense. In this review, we comprehensively review the recent progress in the field of PAMP recognition by PRRs and the signaling pathways activated by PRRs.

1,896 citations


Journal ArticleDOI
TL;DR: It is established that, in addition to oncogenic Kras(G12D), IL-6 transsignaling-dependent activation of Stat3/Socs3 is required to promote PanIN progression and pancreatic ductal adenocarcinoma (PDAC).

740 citations


Journal ArticleDOI
TL;DR: Using a Kras-driven mouse model of PDA, it is established that the inflammatory mediator Stat3 is a critical component of spontaneous and pancreatitis-accelerated PDA precursor formation and supports cell proliferation, metaplasia-associated inflammation, and MMP7 expression during neoplastic development.

469 citations


Journal ArticleDOI
TL;DR: The finding that host DNA released from dying cells acts as a damage-associated molecular pattern that mediates alum adjuvant activity may increase the understanding of the mechanisms of action of current vaccines and help in the design of new adjuvants.
Abstract: Aluminum-based adjuvants (aluminum salts or alum) are widely used in human vaccination, although their mechanisms of action are poorly understood. Here we report that, in mice, alum causes cell death and the subsequent release of host cell DNA, which acts as a potent endogenous immunostimulatory signal mediating alum adjuvant activity. Furthermore, we propose that host DNA signaling differentially regulates IgE and IgG1 production after alum-adjuvanted immunization. We suggest that, on the one hand, host DNA induces primary B cell responses, including IgG1 production, through interferon response factor 3 (Irf3)-independent mechanisms. On the other hand, we suggest that host DNA also stimulates 'canonical' T helper type 2 (T H 2) responses, associated with IgE isotype switching and peripheral effector responses, through Irf3-dependent mechanisms. The finding that host DNA released from dying cells acts as a damage-associated molecular pattern that mediates alum adjuvant activity may increase our understanding of the mechanisms of action of current vaccines and help in the design of new adjuvants.

460 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the IKK complex phosphorylates not only IκBα, thereby activating transcription, but also regnase-1, thereby releasing a 'brake' on IL-6 mRNA expression.
Abstract: Toll-like receptor (TLR) signaling activates the inhibitor of transcription factor NF-κB (IκB) kinase (IKK) complex, which governs NF-κB-mediated transcription during inflammation. The RNase regnase-1 serves a critical role in preventing autoimmunity by controlling the stability of mRNAs that encode cytokines. Here we show that the IKK complex controlled the stability of mRNA for interleukin 6 (IL-6) by phosphorylating regnase-1 in response to stimulation via the IL-1 receptor (IL-1R) or TLR. Phosphorylated regnase-1 underwent ubiquitination and degradation. Regnase-1 was reexpressed in IL-1R- or TLR-activated cells after a period of lower expression. Regnase-1 mRNA was negatively regulated by regnase-1 itself via a stem-loop region present in the regnase-1 3' untranslated region. Our data demonstrate that the IKK complex phosphorylates not only IκBα, thereby activating transcription, but also regnase-1, thereby releasing a 'brake' on IL-6 mRNA expression.

238 citations


Journal ArticleDOI
TL;DR: In this article, the authors showed that adiponectin upregulates IRS-2 through activation of signal transducers and activators of transcription-3 (STAT3), which is associated with IL-6 production.

220 citations


Journal ArticleDOI
TL;DR: IFN-I contributes to resistance of influenza infection by control of monocytes and neutrophils in the lung by using BM chimeric mice, and it is confirmed that IFN- I signaling in hematopoietic cells is required for the generation of Ly6Chi monocytes.
Abstract: Type I interferon (IFN-I) plays a critical role in the homeostasis of hematopoietic stem cells and influences neutrophil influx to the site of inflammation IFN-I receptor knockout (Ifnar1−/−) mice develop significant defects in the infiltration of Ly6Chi monocytes in the lung after influenza infection (A/PR/8/34, H1N1) Ly6Chi monocytes of wild-type (WT) mice are the main producers of MCP-1 while the alternatively generated Ly6Cint monocytes of Ifnar1−/− mice mainly produce KC for neutrophil influx As a consequence, Ifnar1−/− mice recruit more neutrophils after influenza infection than do WT mice Treatment of IFNAR1 blocking antibody on the WT bone marrow (BM) cells in vitro failed to differentiate into Ly6Chi monocytes By using BM chimeric mice (WT BM into Ifnar1−/− and vice versa), we confirmed that IFN-I signaling in hematopoietic cells is required for the generation of Ly6Chi monocytes Of note, WT BM reconstituted Ifnar1−/− chimeric mice with increased numbers of Ly6Chi monocytes survived longer than influenza-infected Ifnar1−/− mice In contrast, WT mice that received Ifnar1−/− BM cells with alternative Ly6Cint monocytes and increased numbers of neutrophils exhibited higher mortality rates than WT mice given WT BM cells Collectively, these data suggest that IFN-I contributes to resistance of influenza infection by control of monocytes and neutrophils in the lung

205 citations


Journal ArticleDOI
22 Apr 2011-Immunity
TL;DR: It is shown that silica and alum induced lipopolysaccharide-primed macrophages to produce the lipid mediator prostaglandin E ₂ (PGE₂) and interleukin-1β (IL-1 β) and that the induction of PGE₁ by particulates controls the immune response in vivo.

200 citations


Journal ArticleDOI
TL;DR: The roles of nucleic acid‐sensing receptors in guarding against pathogen invasion, discriminating between self and non‐self, and contributing to autoimmunity and autoinflammatory diseases are discussed.
Abstract: Summary: Host cells trigger signals for innate immune responses upon recognition of conserved structures in microbial pathogens. Nucleic acids, which are critical components for inheriting genetic information in all species including pathogens, are key structures sensed by the innate immune system. The corresponding receptors for foreign nucleic acids include members of Toll-like receptors, RIG-I-like receptors, and intracellular DNA sensors. While nucleic acid recognition by these receptors is required for host defense against the pathogen, there is a potential risk to the host of self-nucleic acids recognition, thus precipitating autoimmune and autoinflammatory diseases. In this review, we discuss the roles of nucleic acid-sensing receptors in guarding against pathogen invasion, discriminating between self and non-self, and contributing to autoimmunity and autoinflammatory diseases.

196 citations


Journal ArticleDOI
25 Mar 2011-Immunity
TL;DR: It is shown that the IFN-inducible antiviral protein Viperin promoted TLR7- and TLR9-mediated production of type I IFN by pDCs and mediates its antiviral function via the regulation of theTLR7 and TLr9-IRAK1 signaling axis in p DCs.

Journal ArticleDOI
TL;DR: The tripartite motif (TRIM) family is a diverse family of RING finger domain‐containing proteins, which are involved in a variety of cellular functions and are also involved in the regulation of innate immune responses through the modulation of PRR signalling pathways.
Abstract: The innate immune system recognizes microbial components through pattern-recognition receptors (PRRs), including membrane-bound Toll-like receptors and cytosolic receptors such as RIG-I-like receptors and deoxyribonucleic acid (DNA) sensors. These PRRs trigger distinct signal transduction pathways that culminate in induction of an array of cytokines and other mediators required for host defense. The tripartite motif (TRIM) family is a diverse family of RING finger domain-containing proteins, which are involved in a variety of cellular functions. Importantly, recent studies have shown that they are also involved in the regulation of innate immune responses through the modulation of PRR signalling pathways.

Journal ArticleDOI
Shizuo Akira1
TL;DR: The mechanisms of pathogen recognition by TLRs and cytoplasmic receptors are reviewed, and the roles of these receptors in the development of adaptive immunity in response to viral infection are discussed.
Abstract: Innate immunity was for a long time considered to be non-specific because the major function of this system is to digest pathogens and present antigens to the cells involved in acquired immunity. However, recent studies have shown that innate immunity is not non-specific, but is instead sufficiently specific to discriminate self from pathogens through evolutionarily conserved receptors, designated Toll-like receptors (TLRs). Indeed, innate immunity has a crucial role in early host defence against invading pathogens. Furthermore, TLRs were found to act as adjuvant receptors that create a bridge between innate and adaptive immunity, and to have important roles in the induction of adaptive immunity. This paradigm shift is now changing our thinking on the pathogenesis and treatment of infectious, immune and allergic diseases, as well as cancers. Besides TLRs, recent findings have revealed the presence of a cytosolic detector system for invading pathogens. I will review the mechanisms of pathogen recognition by TLRs and cytoplasmic receptors, and then discuss the roles of these receptors in the development of adaptive immunity in response to viral infection.

Journal ArticleDOI
22 Jul 2011-Immunity
TL;DR: It is demonstrated that mice harboring a D34A mutation showed TLR7-dependent, systemic lethal inflammation and CD4(+) T cells showed marked differentiation toward T helper 1 (Th1) or Th17 cell subsets and B cell depletion abolished T cell differentiation and systemic inflammation.

Journal ArticleDOI
TL;DR: It is found that LC3 was recruited in proximity to Salmonella independently of both Atg9L1 and FIP200, which are required for formation of autophagosomes.
Abstract: Salmonella develops into resident bacteria in epithelial cells, and the autophagic machinery (Atg) is thought to play an important role in this process. In this paper, we show that an autophagosome-like double-membrane structure surrounds the Salmonella still residing within the Salmonella-containing vacuole (SCV). This double membrane is defective in Atg9L1- and FAK family-interacting protein of 200 kDa (FIP200)-deficient cells. Atg9L1 and FIP200 are important for autophagy-specific recruitment of the phosphatidylinositol 3-kinase (PI3K) complex. However, in the absence of Atg9L1, FIP200, and the PI3K complex, LC3 and its E3-like enzyme, the Atg16L complex, are still recruited to Salmonella. We propose that the LC3 system is recruited through a mechanism that is independent of isolation membrane generation.

Journal ArticleDOI
TL;DR: Recent advances in the understanding of the innate immune recognition of viruses and the differential connection to the adaptive immune responses induced by infection or vaccination are discussed, with a particular focus on the influenza virus.

Journal ArticleDOI
TL;DR: Type I interferon–responsive B cells provide early protection against bacterial sepsis.
Abstract: Microbes activate pattern recognition receptors to initiate adaptive immunity. T cells affect early innate inflammatory responses to viral infection, but both activation and suppression have been demonstrated. We identify a novel role for B cells in the early innate immune response during bacterial sepsis. We demonstrate that Rag1(-/-) mice display deficient early inflammatory responses and reduced survival during sepsis. Interestingly, B cell-deficient or anti-CD20 B cell-depleted mice, but not α/β T cell-deficient mice, display decreased inflammatory cytokine and chemokine production and reduced survival after sepsis. Both treatment of B cell-deficient mice with serum from wild-type (WT) mice and repletion of Rag1(-/-) mice with B cells improves sepsis survival, suggesting antibody-independent and antibody-dependent roles for B cells in the outcome to sepsis. During sepsis, marginal zone and follicular B cells are activated through type I interferon (IFN-I) receptor (IFN-α/β receptor [IFNAR]), and repleting Rag1(-/-) mice with WT, but not IFNAR(-/-), B cells improves IFN-I-dependent and -independent early cytokine responses. Repleting B cell-deficient mice with the IFN-I-dependent chemokine, CXCL10 was also sufficient to improve sepsis survival. This study identifies a novel role for IFN-I-activated B cells in protective early innate immune responses during bacterial sepsis.

Journal ArticleDOI
TL;DR: It is shown that infection of suckling mice with influenza A virus protected the mice as adults against allergen-induced airway hyperreactivity (AHR), a cardinal feature of asthma.
Abstract: Infection with influenza A virus represents a major public health threat worldwide, particularly in patients with asthma. However, immunity induced by influenza A virus may have beneficial effects, particularly in young children, that might protect against the later development of asthma, as suggested by the hygiene hypothesis. Herein, we show that infection of suckling mice with influenza A virus protected the mice as adults against allergen-induced airway hyperreactivity (AHR), a cardinal feature of asthma. The protective effect was associated with the preferential expansion of CD4–CD8–, but not CD4+, NKT cells and required T-bet and TLR7. Adoptive transfer of this cell population into allergen-sensitized adult mice suppressed the development of allergen-induced AHR, an effect associated with expansion of the allergen-specific forkhead box p3+ (Foxp3+) Treg cell population. Influenza-induced protection was mimicked by treating suckling mice with a glycolipid derived from Helicobacter pylori (a bacterium associated with protection against asthma) that activated NKT cells in a CD1d-restricted fashion. These findings suggest what we believe to be a novel pathway that can regulate AHR, and a new therapeutic strategy (treatment with glycolipid activators of this NKT cell population) for asthma.

Journal ArticleDOI
TL;DR: A novel subset of CD8α+ LPDCs was analyzed to elucidate their immunological function and induced Ag-specific IgG in serum, a Th1 response, and CTL activity in vivo, the first analysis, to the authors' knowledge, of CD9α+ DCs in the LP of the small intestine.
Abstract: CD103(+) dendritic cells (DCs) are the major conventional DC population in the intestinal lamina propria (LP). Our previous report showed that a small number of cells in the LP could be classified into four subsets based on the difference in CD11c/CD11b expression patterns: CD11c(hi)CD11b(lo) DCs, CD11c(hi)CD11b(hi) DCs, CD11c(int)CD11b(int) macrophages, and CD11c(int)CD11b(hi) eosinophils. The CD11c(hi)CD11b(hi) DCs, which are CD103(+), specifically express TLR5 and induce the differentiation of naive B cells into IgA(+) plasma cells. These DCs also mediate the differentiation of Ag-specific Th17 and Th1 cells in response to flagellin. We found that small intestine CD103(+) DCs of the LP (LPDCs) could be divided into a small subset of CD8α(+) cells and a larger subset of CD8α(-) cells. Flow cytometry analysis revealed that CD103(+)CD8α(+) and CD103(+)CD8α(-) LPDCs were equivalent to CD11c(hi)CD11b(lo) and CD11c(hi)CD11b(hi) subsets, respectively. We analyzed a novel subset of CD8α(+) LPDCs to elucidate their immunological function. CD103(+)CD8α(+) LPDCs expressed TLR3, TLR7, and TLR9 and produced IL-6 and IL-12p40, but not TNF-α, IL-10, or IL-23, following TLR ligand stimulation. CD103(+)CD8α(+) LPDCs did not express the gene encoding retinoic acid-converting enzyme Raldh2 and were not involved in T cell-independent IgA synthesis or Foxp3(+) regulatory T cell induction. Furthermore, CD103(+)CD8α(+) LPDCs induced Ag-specific IgG in serum, a Th1 response, and CTL activity in vivo. Accordingly, CD103(+)CD8α(+) LPDCs exhibit a different function from CD103(+)CD8α(-) LPDCs in active immunity. This is the first analysis, to our knowledge, of CD8α(+) DCs in the LP of the small intestine.

Journal ArticleDOI
TL;DR: It is shown that TNF-α, largely produced by Ly6c+CD11b+ dendritic cells (DCs), plays a central role in promoting IL-17A from CD4+ T cells and collaborating with it to induce airway neutrophilia.
Abstract: Aspergillus fumigatus is commonly associated with allergic bronchopulmonary aspergillosis in patients with severe asthma in which chronic airway neutrophilia predicts a poor outcome. We were able to recapitulate fungus-induced neutrophilic airway inflammation in a mouse model in our efforts to understand the underlying mechanisms. However, neutrophilia occurred in a mouse strain-selective fashion, providing us with an opportunity to perform a comparative study to elucidate the mechanisms involved. Here we show that TNF-α, largely produced by Ly6c+CD11b+ dendritic cells (DCs), plays a central role in promoting IL-17A from CD4+ T cells and collaborating with it to induce airway neutrophilia. Compared with C57BL/6 mice, BALB/c mice displayed significantly more TNF-α–producing DCs and macrophages in the lung. Lung TNF-α levels were drastically reduced in CD11c-DTR BALB/c mice depleted of CD11c+ cells, and TNF-α–producing Ly6c+CD11b+ cells were abolished in Dectin-1−/− and MyD88−/− BALB/c mice. TNF-α deficiency itself blunted accumulation of inflammatory Ly6c+CD11b+ DCs. Also, lack of TNF-α decreased IL-17A but promoted IL-5 levels, switching inflammation from a neutrophil to eosinophil bias resembling that in C57BL/6 mice. The TNF-αlow DCs in C57BL/6 mice contained more NF-κB p50 homodimers, which are strong repressors of TNF-α transcription. Functionally, collaboration between TNF-α and IL-17A triggered significantly higher levels of the neutrophil chemoattractants keratinocyte cytokine and macrophage inflammatory protein 2 in BALB/c mice. Our study identifies TNF-α as a molecular switch that orchestrates a sequence of events in DCs and CD4 T cells that promote neutrophilic airway inflammation.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate a mechanism mediating a strong IFN-β response in mouse conventional dendritic cells challenged by Candida spp., subsequently orchestrating IFNα/β receptor 1-dependent intracellular STAT1 activation and IFN regulatory factor (IRF) 7 expression.
Abstract: Human fungal pathogens such as the dimorphic Candida albicans or the yeast-like Candida glabrata can cause systemic candidiasis of high mortality in immunocompromised individuals. Innate immune cells such as dendritic cells and macrophages establish the first line of defense against microbial pathogens and largely determine the outcome of infections. Among other cytokines, they produce type I IFNs (IFNs-I), which are important modulators of the host immune response. Whereas an IFN-I response is a hallmark immune response to bacteria and viruses, a function in fungal pathogenesis has remained unknown. In this study, we demonstrate a novel mechanism mediating a strong IFN-β response in mouse conventional dendritic cells challenged by Candida spp., subsequently orchestrating IFN-α/β receptor 1-dependent intracellular STAT1 activation and IFN regulatory factor (IRF) 7 expression. Interestingly, the initial IFN-β release bypasses the TLR 4 and TLR2, the TLR adaptor Toll/IL-1R domain-containing adapter-inducing IFN-β and the β-glucan/phagocytic receptors dectin-1 and CD11b. Notably, Candida-induced IFN-β release is strongly impaired by Src and Syk family kinase inhibitors and strictly requires completion of phagocytosis as well as phagosomal maturation. Strikingly, TLR7, MyD88, and IRF1 are essential for IFN-β signaling. Furthermore, in a mouse model of disseminated candidiasis we show that IFN-I signaling promotes persistence of C. glabrata in the host. Our data uncover for the first time a pivotal role for endosomal TLR7 signaling in fungal pathogen recognition and highlight the importance of IFNs-I in modulating the host immune response to C. glabrata.

Journal ArticleDOI
TL;DR: It is shown that Akt is a downstream molecule of TRIF/TANK-binding kinase 1 (TBK1) and plays an important role in the activation of IRF3 by TLR3 and -4 agonists.
Abstract: Toll/IL-1R domain-containing adaptor inducing IFN-β (TRIF) is an adaptor molecule that is recruited to TLR3 and -4 upon agonist stimulation and triggers activation of IFN regulatory factor 3 (IRF3) and expression of type 1 IFNs, which are critical for cellular antiviral responses We show that Akt is a downstream molecule of TRIF/TANK-binding kinase 1 (TBK1) and plays an important role in the activation of IRF3 by TLR3 and -4 agonists Blockade of Akt by a dominant-negative mutant or by short interfering RNA decreased IRF3 activation and IFN-β expression induced by polyinosinic:polycytidylic acid [poly(I:C)], LPS, TRIF, and TBK1 Association of endogenous TBK1 and Akt was observed in macrophages when stimulated with poly(I:C) and LPS In vitro kinase assays combined with reversed-phase liquid chromatography mass spectrometry analysis showed that TBK1 enhanced phosphorylation of Akt on Ser473, whereas knockdown of TBK1 expression by short interfering RNA in macrophages decreased poly(I:C)- and LPS-induced Akt phosphorylation Embryonic fibroblasts derived from TBK1 knockout mice also showed impaired Akt phosphorylation in response to poly(I:C) and LPS To our knowledge, our results demonstrate a new regulatory mechanism for Akt activation mediated by TBK1 and a novel role of Akt in TLR-mediated immune responses

Journal ArticleDOI
TL;DR: It is shown that crosstalk between type I IFNs and Nod1/Nod2 signaling promotes bacterial recognition, but induces harmful effects in the virally infected host.

Journal ArticleDOI
05 Jan 2011-PLOS ONE
TL;DR: It is suggested that alveolar macrophages, which predominantly acquire an AAM phenotype following A. fumigatus infection, have a protective role in defense against this fungus.
Abstract: The ubiquitous fungus Aspergillus fumigatus is associated with chronic diseases such as invasive pulmonary aspergillosis in immunosuppressed patients and allergic bronchopulmonary aspergillosis (ABPA) in patients with cystic fibrosis or severe asthma. Because of constant exposure to this fungus, it is critical for the host to exercise an immediate and decisive immune response to clear fungal spores to ward off disease. In this study, we observed that rapidly after infection by A. fumigatus, alveolar macrophages predominantly express Arginase 1 (Arg1), a key marker of alternatively activated macrophages (AAMs). The macrophages were also found to express Ym1 and CD206 that are also expressed by AAMs but not NOS2, which is expressed by classically activated macrophages. The expression of Arg1 was reduced in the absence of the known signaling axis, IL-4Rα/STAT6, for AAM development. While both Dectin-1 and TLR expressed on the cell surface have been shown to sense A. fumigatus, fungus-induced Arg1 expression in CD11c+ alveolar macrophages was not dependent on either Dectin-1 or the adaptor MyD88 that mediates intracellular signaling by most TLRs. Alveolar macrophages from WT mice efficiently phagocytosed fungal conidia, but those from mice deficient in Dectin-1 showed impaired fungal uptake. Depletion of macrophages with clodronate-filled liposomes increased fungal burden in infected mice. Collectively, our studies suggest that alveolar macrophages, which predominantly acquire an AAM phenotype following A. fumigatus infection, have a protective role in defense against this fungus.

Journal ArticleDOI
TL;DR: A role for Lcn2 in regulating inflammation in the injured spinal cord is suggested and that lack of LCN2 reduces secondary damage and improves locomotor recovery after spinal cord contusion injury.
Abstract: Lipocalin 2 (Lcn2) plays an important role in defense against bacterial infection by interfering with bacterial iron acquisition. Although Lcn2 is expressed in a number of aseptic inflammatory conditions, its role in these conditions remains unclear. We examined the expression and role of Lcn2 after spinal cord injury (SCI) in adult mice by using a contusion injury model. Lcn2 expression at the protein level is rapidly increased 12-fold at 1 d after SCI and decreases gradually thereafter, being three times as high as control levels at 21 d after injury. Lcn2 expression is strongly induced after contusion injury in astrocytes, neurons, and neutrophils. The Lcn2 receptor (Lcn2R), which has been shown to influence cell survival, is also expressed after SCI in the same cell types. Lcn2-deficient (Lcn2⁻/⁻) mice showed significantly better locomotor recovery after spinal cord contusion injury than wild-type (Lcn2⁺/⁺) mice. Histological assessments indicate improved neuronal and tissue survival and greater sparing of myelin in Lcn2⁻/⁻ mice after contusion injury. Flow cytometry showed a decrease in neutrophil influx and a small increase in the monocyte population in Lcn2⁻/⁻ injured spinal cords. This change was accompanied by a reduction in the expression of several pro-inflammatory chemokines and cytokines as well as inducible nitric oxide synthase early after SCI in Lcn2⁻/⁻ mice compared with wild-type animals. Our results, therefore, suggest a role for Lcn2 in regulating inflammation in the injured spinal cord and that lack of Lcn2 reduces secondary damage and improves locomotor recovery after spinal cord contusion injury.

Journal ArticleDOI
TL;DR: A review of the molecular and immunological mechanisms by which DNA vaccines work and how such knowledge can be used to bring about improvements in their efficacy can be found in this article, where the authors provided evidence that the "adjuvant effect" of plasmid DNA is mediated by its doublestranded structure.
Abstract: DNA vaccines can induce both humoral and cellular immune responses in animals. Some DNA vaccines are already licensed for infectious diseases such as West Nile virus encephalitis in horses. When used in humans, however, DNA vaccines suffer from lower immunogenicity profiles. Although the reasons for this are poorly understood, various hypotheses have been proposed. This review aims to provide better understanding of the molecular and immunological mechanisms by which DNA vaccines work and how such knowledge can be used to bring about improvements in their efficacy. Recent studies have provided evidence that the ‘adjuvant effect’ of plasmid DNA is mediated by its doublestranded structure. This structure activates stimulator of interferon genes/TANK-binding kinase 1 (STING/TBK1)- dependent innate immune signaling pathways in the absence of Toll-like receptors. Indeed, type-I interferons (IFNs), induced in vivo via the STING/TBK1 pathway, were found to be crucial for both direct- and indirect-antigen presentation via distinct cell types (i.e. dendritic cells (DC) and muscle cells, respectively). Importantly, incorporation of TBK1 into a DNA vaccine was found to enhance the antigen-specific humoral immune responses targeting the Plasmodium falciparum serine repeat antigen (SERA), a candidate vaccine antigen expressed in the blood-stages of human malaria parasites. Thus, the results of these studies may offer new ways to develop DNA vaccines, as well as delivering novel vaccine adjuvants against infectious diseases.

Journal ArticleDOI
TL;DR: This Viewpoint summarizes the recent findings on the role of histone modifications regulating macrophage polarization toward M1 and M2 subtypes.
Abstract: Epigenetic control of gene expression is critical for cellular differentiation and development. Macrophage development, polarization and activation are also controlled by DNA and histone modifications. This Viewpoint summarizes the recent findings on the role of histone modifications regulating macrophage polarization toward M1 and M2 subtypes.

Journal ArticleDOI
TL;DR: A key role for TANK is demonstrated in enabling the canonical IKKs and the IKK-related kinases to regulate each other, which is required to limit the strength of TLR signaling and ultimately, prevent autoimmunity.
Abstract: Toll-like receptor (TLR) ligands that signal via TIR-domain-containing adapter-inducing IFNβ (TRIF) activate the IκB kinase (IKK)-related kinases, TRAF associated NFκB activator (TANK)-binding kinase-1 (TBK1) and IKKe, which then phosphorylate IRF3 and induce the production of IFNβ. Here we show that TBK1 and IKKe are also activated by TLR ligands that signal via MyD88. Notably, the activation of IKKe is rapid, transient, and it precedes a more prolonged activation of TBK1. The MyD88- and TRIF-dependent signaling pathways activate the IKK-related kinases by two signaling pathways. One is mediated by the canonical IKKs, whereas the other culminates in the autoactivation of the IKK-related kinases. Once activated, TBK1/IKKe then phosphorylate and inhibit the canonical IKKs. The negative regulation of the canonical IKKs by the IKK-related kinases occurs in both the TRIF- and MyD88-dependent TLR pathways, whereas IRF3 phosphorylation is restricted to the TRIF-dependent signaling pathway. We have discovered that the activation of IKKe is abolished, the activation of TBK1 is reduced, and the interaction between the IKK-related kinases and the canonical IKKs is suppressed in TANK−/− macrophages, preventing the IKK-related kinases from negatively regulating the canonical IKKs. In contrast, IRF3 phosphorylation and IFNβ production was normal in TANK−/− macrophages. Our results demonstrate a key role for TANK in enabling the canonical IKKs and the IKK-related kinases to regulate each other, which is required to limit the strength of TLR signaling and ultimately, prevent autoimmunity.

Journal ArticleDOI
TL;DR: It is hoped that an improved understanding of pathogenic mechanisms, for example by studying the genetic basis of CD and other forms of inflammatory bowel diseases (IBD), will lead to improved therapies and possibly preventative strategies in individuals identified as being at risk.
Abstract: Crohn disease (CD) is a chronic and debilitating inflammatory condition of the gastrointestinal tract.1 Prevalence in western populations is 100–150/100,000 and somewhat higher in Ashkenazi Jews. Peak incidence is in early adult life, although any age can be affected and a majority of affected individuals progress to relapsing and chronic disease. Medical treatments rely significantly on empirical corticosteroid therapy and immunosuppression, and intestinal resectional surgery is frequently required. Thus, 80% of patients with CD come to surgery for refractory disease or complications. It is hoped that an improved understanding of pathogenic mechanisms, for example by studying the genetic basis of CD and other forms of inflammatory bowel diseases (IBD), will lead to improved therapies and possibly preventative strategies in individuals identified as being at risk.

Journal ArticleDOI
TL;DR: It is indicated that NLRC5 is dispensable for cytokine induction in virus and bacterial infections under physiologic conditions and controls IL-1β production through an unidentified pathway.
Abstract: Nucleotide-binding domain and leucine rich repeat containing gene family receptors (NLRs) are cytosolic proteins that respond to a variety of pathogen and host components to induce inflammatory cytokines. NLRC5 is a recently identified member of the NLR family that has been implicated in positive and negative regulation of antiviral innate immune responses. To clarify whether NLRC5 controls antiviral innate immunity in vivo, we generated NLRC5-deficient mice. Macrophages and dendritic cells derived from NLRC5-deficient mice induced relatively normal levels of IFN-β, IL-6, and TNF-α after treatment with RNA viruses, DNA viruses, and bacteria. The serum cytokine levels after polyinosinic-polycytidylic acid infection were also comparable between control and NLRC5-deficient mice. NLRC5 overexpression promoted IL-1β production via caspase-1, suggesting that NLRC5 constitutes an inflammasome. However, there was no reduction of IL-1β in NLRC5-deficient cells in response to known inflammasome activators, suggesting that NLRC5 controls IL-1β production through an unidentified pathway. These findings indicate that NLRC5 is dispensable for cytokine induction in virus and bacterial infections under physiologic conditions.