scispace - formally typeset
Search or ask a question
Institution

Durham University

EducationDurham, United Kingdom
About: Durham University is a education organization based out in Durham, United Kingdom. It is known for research contribution in the topics: Population & Galaxy. The organization has 39385 authors who have published 82311 publications receiving 3110994 citations. The organization is also known as: University of Durham & Gallery of Durham University.


Papers
More filters
Journal ArticleDOI
TL;DR: Scolnic et al. as discussed by the authors presented optical light curves, redshifts, and classifications for 365 spectroscopically confirmed Type Ia supernovae (SNe Ia) discovered by the Pan-STARRS1 (PS1) Medium Deep Survey.
Abstract: Author(s): Scolnic, DM; Jones, DO; Rest, A; Pan, YC; Chornock, R; Foley, RJ; Huber, ME; Kessler, R; Narayan, G; Riess, AG; Rodney, S; Berger, E; Brout, DJ; Challis, PJ; Drout, M; Finkbeiner, D; Lunnan, R; Kirshner, RP; Sanders, NE; Schlafly, E; Smartt, S; Stubbs, CW; Tonry, J; Wood-Vasey, WM; Foley, M; Hand, J; Johnson, E; Burgett, WS; Chambers, KC; Draper, PW; Hodapp, KW; Kaiser, N; Kudritzki, RP; Magnier, EA; Metcalfe, N; Bresolin, F; Gall, E; Kotak, R; McCrum, M; Smith, KW | Abstract: We present optical light curves, redshifts, and classifications for 365 spectroscopically confirmed Type Ia supernovae (SNe Ia) discovered by the Pan-STARRS1 (PS1) Medium Deep Survey. We detail improvements to the PS1 SN photometry, astrometry, and calibration that reduce the systematic uncertainties in the PS1 SN Ia distances. We combine the subset of 279 PS1 SNe Ia (0.03 l z l 0.68) with useful distance estimates of SNe Ia from the Sloan Digital Sky Survey (SDSS), SNLS, and various low-z and Hubble Space Telescope samples to form the largest combined sample of SNe Ia, consisting of a total of 1048 SNe Ia in the range of 0.01 l z l 2.3, which we call the Pantheon Sample. When combining Planck 2015 cosmic microwave background (CMB) measurements with the Pantheon SN sample, we find Wm = 0.307 ± 0.012 and w = -1.026 ± 0.041 for the wCDM model. When the SN and CMB constraints are combined with constraints from BAO and local H0 measurements, the analysis yields the most precise measurement of dark energy to date: w0 = -1.007 ± 0.089 and wa = -0.222 ± 0.407 for the w0waCDM model. Tension with a cosmological constant previously seen in an analysis of PS1 and low-z SNe has diminished after an increase of 2× in the statistics of the PS1 sample, improved calibration and photometry, and stricter light-curve quality cuts. We find that the systematic uncertainties in our measurements of dark energy are almost as large as the statistical uncertainties, primarily due to limitations of modeling the low-redshift sample. This must be addressed for future progress in using SNe Ia to measure dark energy.

2,025 citations

Journal ArticleDOI
Anton M. Koekemoer1, Sandra M. Faber2, Henry C. Ferguson1, Norman A. Grogin1, Dale D. Kocevski2, David C. Koo2, Kamson Lai2, Jennifer M. Lotz1, Ray A. Lucas1, Elizabeth J. McGrath2, Sara Ogaz1, Abhijith Rajan1, Adam G. Riess3, S. Rodney3, L. G. Strolger4, Stefano Casertano1, Marco Castellano, Tomas Dahlen1, Mark Dickinson, Timothy Dolch3, Adriano Fontana, Mauro Giavalisco5, Andrea Grazian, Yicheng Guo5, Nimish P. Hathi6, Kuang-Han Huang3, Kuang-Han Huang1, Arjen van der Wel7, Hao Jing Yan8, Viviana Acquaviva9, David M. Alexander10, Omar Almaini11, Matthew L. N. Ashby12, Marco Barden13, Eric F. Bell14, Frédéric Bournaud15, Thomas M. Brown1, Karina Caputi16, Paolo Cassata5, Peter Challis17, Ranga-Ram Chary18, Edmond Cheung2, Michele Cirasuolo16, Christopher J. Conselice11, Asantha Cooray19, Darren J. Croton20, Emanuele Daddi15, Romeel Davé21, Duilia F. de Mello22, Loic de Ravel16, Avishai Dekel23, Jennifer L. Donley1, James Dunlop16, Aaron A. Dutton24, David Elbaz25, Giovanni Fazio12, Alexei V. Filippenko26, Steven L. Finkelstein27, Chris Frazer19, Jonathan P. Gardner22, Peter M. Garnavich28, Eric Gawiser9, Ruth Gruetzbauch11, Will G. Hartley11, B. Haussler11, Jessica Herrington14, Philip F. Hopkins26, J.-S. Huang29, Saurabh Jha9, Andrew Johnson2, Jeyhan S. Kartaltepe3, Ali Ahmad Khostovan19, Robert P. Kirshner12, Caterina Lani11, Kyoung-Soo Lee30, Weidong Li26, Piero Madau2, Patrick J. McCarthy6, Daniel H. McIntosh31, Ross J. McLure, Conor McPartland2, Bahram Mobasher32, Heidi Moreira9, Alice Mortlock11, Leonidas A. Moustakas18, Mark Mozena2, Kirpal Nandra33, Jeffrey A. Newman34, Jennifer L. Nielsen31, Sami Niemi1, Kai G. Noeske1, Casey Papovich27, Laura Pentericci, Alexandra Pope, Joel R. Primack2, Swara Ravindranath35, Naveen A. Reddy, Alvio Renzini, Hans Walter Rix7, Aday R. Robaina, David J. Rosario2, Piero Rosati7, S. Salimbeni5, Claudia Scarlata18, Brian Siana18, Luc Simard36, Joseph Smidt19, D. Snyder2, Rachel S. Somerville1, Hyron Spinrad26, Amber N. Straughn22, Olivia Telford34, Harry I. Teplitz18, Jonathan R. Trump2, Carlos J. Vargas9, Carolin Villforth1, C. Wagner31, P. Wandro2, Risa H. Wechsler37, Benjamin J. Weiner21, Tommy Wiklind1, Vivienne Wild, Grant W. Wilson5, Stijn Wuyts12, Min S. Yun5 
TL;DR: In this paper, the authors describe the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS).
Abstract: This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at z 1.5-8, and to study Type Ia supernovae at z > 1.5. Five premier multi-wavelength sky regions are selected, each with extensive multi-wavelength observations. The primary CANDELS data consist of imaging obtained in the Wide Field Camera 3 infrared channel (WFC3/IR) and the WFC3 ultraviolet/optical channel, along with the Advanced Camera for Surveys (ACS). The CANDELS/Deep survey covers ~125 arcmin2 within GOODS-N and GOODS-S, while the remainder consists of the CANDELS/Wide survey, achieving a total of ~800 arcmin2 across GOODS and three additional fields (Extended Groth Strip, COSMOS, and Ultra-Deep Survey). We summarize the observational aspects of the survey as motivated by the scientific goals and present a detailed description of the data reduction procedures and products from the survey. Our data reduction methods utilize the most up-to-date calibration files and image combination procedures. We have paid special attention to correcting a range of instrumental effects, including charge transfer efficiency degradation for ACS, removal of electronic bias-striping present in ACS data after Servicing Mission 4, and persistence effects and other artifacts in WFC3/IR. For each field, we release mosaics for individual epochs and eventual mosaics containing data from all epochs combined, to facilitate photometric variability studies and the deepest possible photometry. A more detailed overview of the science goals and observational design of the survey are presented in a companion paper.

2,011 citations

Journal ArticleDOI
TL;DR: In this article, the authors simulate the growth of galaxies and their central supermassive black holes by implementing a suite of semi-analytic models on the output of the Millennium Run, a very large simulation of the concordance A cold dark matter cosmogony.
Abstract: We simulate the growth of galaxies and their central supermassive black holes by implementing a suite of semi-analytic models on the output of the Millennium Run, a very large simulation of the concordance A cold dark matter cosmogony. Our procedures follow the detailed assembly history of each object and are able to track the evolution of all galaxies more massive than the Small Magellanic Cloud throughout a volume comparable to that of large modern redshift surveys. In this first paper we supplement previous treatments of the growth and activity of central black holes with a new model for 'radio' feedback from those active galactic nuclei that lie at the centre of a quasi-static X-ray-emitting atmosphere in a galaxy group or cluster. We show that for energetically and observationally plausible parameters such a model can simultaneously explain: (i) the low observed mass drop-out rate in cooling flows; (ii) the exponential cut-off at the bright end of the galaxy luminosity function; and (iii) the fact that the most massive galaxies tend to be bulge-dominated systems in clusters and to contain systematically older stars than lower mass galaxies. This success occurs because static hot atmospheres form only in the most massive structures, and radio feedback (in contrast, for example, to supernova or starburst feedback) can suppress further cooling and star formation without itself requiring star formation. We discuss possible physical models that might explain the accretion rate scalings required for our phenomenological 'radio mode' model to be successful.

1,997 citations

Journal ArticleDOI
Fiona A. Harrison1, William W. Craig2, William W. Craig3, Finn Erland Christensen4, Charles J. Hailey5, William W. Zhang6, Steven E. Boggs2, Daniel Stern1, W. Rick Cook1, Karl Forster1, Paolo Giommi, Brian W. Grefenstette1, Yunjin Kim1, Takao Kitaguchi7, Jason E. Koglin5, Kristin K. Madsen1, Peter H. Mao1, Hiromasa Miyasaka1, Kaya Mori5, M. Perri8, Michael J. Pivovaroff3, Simonetta Puccetti8, Vikram Rana1, Niels Jørgen Stenfeldt Westergaard4, J. L. Willis1, Andreas Zoglauer2, Hongjun An9, Matteo Bachetti10, Matteo Bachetti11, Nicolas M. Barrière2, Eric C. Bellm1, Varun Bhalerao1, Varun Bhalerao12, Nicolai Brejnholt4, Felix Fuerst1, Carl Christian Liebe1, Craig B. Markwardt6, Melania Nynka5, Julia Vogel3, Dominic J. Walton1, Daniel R. Wik6, David M. Alexander13, L. R. Cominsky14, Ann Hornschemeier6, Allan Hornstrup4, Victoria M. Kaspi9, Greg Madejski, Giorgio Matt15, S. Molendi7, David M. Smith16, John A. Tomsick2, Marco Ajello2, David R. Ballantyne17, Mislav Baloković1, Didier Barret11, Didier Barret10, Franz E. Bauer18, Roger Blandford8, W. Niel Brandt19, Laura Brenneman20, James Chiang8, Deepto Chakrabarty21, Jérôme Chenevez4, Andrea Comastri7, Francois Dufour9, Martin Elvis20, Andrew C. Fabian22, Duncan Farrah23, Chris L. Fryer24, Eric V. Gotthelf5, Jonathan E. Grindlay20, D. J. Helfand25, Roman Krivonos2, David L. Meier1, Jon M. Miller26, Lorenzo Natalucci7, Patrick Ogle1, Eran O. Ofek27, Andrew Ptak6, Stephen P. Reynolds28, Jane R. Rigby6, Gianpiero Tagliaferri7, Stephen E. Thorsett29, Ezequiel Treister30, C. Megan Urry31 
TL;DR: The Nuclear Spectroscopic Telescope Array (NuSTAR) as discussed by the authors is the first focusing high-energy X-ray telescope in orbit, which operates in the band from 3 to 79 keV.
Abstract: The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the ~10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to the peak epoch of galaxy assembly in the universe (at z ≾ 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element ^(44)Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6° inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014.

1,966 citations

Journal ArticleDOI
TL;DR: In this paper, a power-spectrum analysis of the final 2DF Galaxy Redshift Survey (2dFGRS) employing a direct Fourier method is presented, and the covariance matrix is determined using two different approaches to the construction of mock surveys, which are used to demonstrate that the input cosmological model can be correctly recovered.
Abstract: We present a power-spectrum analysis of the final 2dF Galaxy Redshift Survey (2dFGRS), employing a direct Fourier method. The sample used comprises 221 414 galaxies with measured redshifts. We investigate in detail the modelling of the sample selection, improving on previous treatments in a number of respects. A new angular mask is derived, based on revisions to the photometric calibration. The redshift selection function is determined by dividing the survey according to rest-frame colour, and deducing a self-consistent treatment of k-corrections and evolution for each population. The covariance matrix for the power-spectrum estimates is determined using two different approaches to the construction of mock surveys, which are used to demonstrate that the input cosmological model can be correctly recovered. We discuss in detail the possible differences between the galaxy and mass power spectra, and treat these using simulations, analytic models and a hybrid empirical approach. Based on these investigations, we are confident that the 2dFGRS power spectrum can be used to infer the matter content of the universe. On large scales, our estimated power spectrum shows evidence for the ‘baryon oscillations’ that are predicted in cold dark matter (CDM) models. Fitting to a CDM model, assuming a primordial n s = 1 spectrum, h = 0.72 and negligible neutrino mass, the preferred

1,940 citations


Authors

Showing all 39730 results

NameH-indexPapersCitations
Eugene Braunwald2301711264576
Robert J. Lefkowitz214860147995
David J. Hunter2131836207050
Francis S. Collins196743250787
Robert M. Califf1961561167961
Martin White1962038232387
Eric J. Topol1931373151025
David J. Schlegel193600193972
Simon D. M. White189795231645
George Efstathiou187637156228
Terrie E. Moffitt182594150609
John A. Rogers1771341127390
Avshalom Caspi170524113583
Richard S. Ellis169882136011
Rob Ivison1661161102314
Network Information
Related Institutions (5)
University of Oxford
258.1K papers, 12.9M citations

94% related

University of Cambridge
282.2K papers, 14.4M citations

94% related

Imperial College London
209.1K papers, 9.3M citations

93% related

University College London
210.6K papers, 9.8M citations

92% related

University of Chicago
160K papers, 9.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023182
2022555
20214,695
20204,628
20194,239
20184,047