scispace - formally typeset
Search or ask a question

Showing papers by "Indian Institute of Science published in 2012"


Journal ArticleDOI
20 Apr 2012-Science
TL;DR: The contemporary evolution of glaciers in the Himalayan region is reviewed, including those of the less well sampled region of the Karakoram to the Northwest, in order to provide a current, comprehensive picture of how they are changing.
Abstract: Himalayan glaciers are a focus of public and scientific debate. Prevailing uncertainties are of major concern because some projections of their future have serious implications for water resources. Most Himalayan glaciers are losing mass at rates similar to glaciers elsewhere, except for emerging indications of stability or mass gain in the Karakoram. A poor understanding of the processes affecting them, combined with the diversity of climatic conditions and the extremes of topographical relief within the region, makes projections speculative. Nevertheless, it is unlikely that dramatic changes in total runoff will occur soon, although continuing shrinkage outside the Karakoram will increase the seasonality of runoff, affect irrigation and hydropower, and alter hazards.

1,561 citations


Journal ArticleDOI
13 Sep 2012-Nature
TL;DR: These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.
Abstract: The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon(1-3). With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses(4-9). As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the world's major tropical regions. Our analysis reveals great variation in reserve 'health': about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.

962 citations


Journal ArticleDOI
TL;DR: Using in situ Raman scattering from a single-layer MoS2 electrochemically top-gated field effect transistor (FET), this paper showed softening and broadening of the A(1g) phonon with electron doping, whereas the other Raman-active E2g(1) mode remains essentially inert.
Abstract: A strong electron-phonon interaction which limits the electronic mobility of semiconductors can also have significant effects on phonon frequencies. The latter is the key to the use of Raman spectroscopy for nondestructive characterization of doping in graphene-based devices. Using in situ Raman scattering from a single-layer MoS2 electrochemically top-gated field-effect transistor (FET), we show softening and broadening of the A(1g) phonon with electron doping, whereas the other Raman-active E-2g(1) mode remains essentially inert. Confirming these results with first-principles density functional theory based calculations, we use group theoretical arguments to explain why the A(1g) mode specifically exhibits a strong sensitivity to electron doping. Our work opens up the use of Raman spectroscopy in probing the level of doping in single-layer MoS2-based FETs, which have a high on-off ratio and are of technological significance.

916 citations


Journal ArticleDOI
TL;DR: A discussion of the FDA guidance on regulatory classification of pharmaceutical cocrystals of active pharmaceutical ingredients (APIs) was held in Manesar near Delhi, India, from February 2-4, 2012 as mentioned in this paper.
Abstract: The December 2011 release of a draft United States Food and Drug Administration (FDA) guidance concerning regulatory classification of pharmaceutical cocrystals of active pharmaceutical ingredients (APIs) addressed two matters of topical interest to the crystal engineering and pharmaceutical science communities: (1) a proposed definition of cocrystals; (2) a proposed classification of pharmaceutical cocrystals as dissociable “API-excipient” molecular complexes. The Indo–U.S. Bilateral Meeting sponsored by the Indo–U.S. Science and Technology Forum titled The Evolving Role of Solid State Chemistry in Pharmaceutical Science was held in Manesar near Delhi, India, from February 2–4, 2012. A session of the meeting was devoted to discussion of the FDA guidance draft. The debate generated strong consensus on the need to define cocrystals more broadly and to classify them like salts. It was also concluded that the diversity of API crystal forms makes it difficult to classify solid forms into three categories that...

734 citations


Journal ArticleDOI
TL;DR: It is shown that r-GO sheets have ionizable groups with a single pK value (8.0) while GO sheets have groups that are more acidic (pK = 4.3), in addition to groups with pK values of 6.6 and 9.0.
Abstract: The chemistry underlying the aqueous dispersibility of graphene oxide (GO) and reduced graphene oxide (r-GO) is a key consideration in the design of solution processing techniques for the preparation of processable graphene sheets. Here, we use zeta potential measurements, pH titrations, and infrared spectroscopy to establish the chemistry underlying the aqueous dispersibility of GO and r-GO sheets at different values of pH. We show that r-GO sheets have ionizable groups with a single pK value (8.0) while GO sheets have groups that are more acidic (pK = 4.3), in addition to groups with pK values of 6.6 and 9.0. Infrared spectroscopy has been used to follow the sequence of ionization events. In both GO and r-GO sheets, it is ionization of the carboxylic groups that is primarily responsible for the build up of charge, but on GO sheets, the presence of phenolic and hydroxyl groups in close proximity to the carboxylic groups lowers the pKa value by stabilizing the carboxylate anion, resulting in superior wate...

715 citations


Journal ArticleDOI
17 Jul 2012-PLOS ONE
TL;DR: A range of currently available early warning methods are summarized and applied to two simulated time series that are typical of systems undergoing a critical transition, offering a practical toolbox that may be used in a wide range of fields to help detect early warning signals of critical transitions in time series data.
Abstract: Many dynamical systems, including lakes, organisms, ocean circulation patterns, or financial markets, are now thought to have tipping points where critical transitions to a contrasting state can happen. Because critical transitions can occur unexpectedly and are difficult to manage, there is a need for methods that can be used to identify when a critical transition is approaching. Recent theory shows that we can identify the proximity of a system to a critical transition using a variety of so-called ‘early warning signals’, and successful empirical examples suggest a potential for practical applicability. However, while the range of proposed methods for predicting critical transitions is rapidly expanding, opinions on their practical use differ widely, and there is no comparative study that tests the limitations of the different methods to identify approaching critical transitions using time-series data. Here, we summarize a range of currently available early warning methods and apply them to two simulated time series that are typical of systems undergoing a critical transition. In addition to a methodological guide, our work offers a practical toolbox that may be used in a wide range of fields to help detect early warning signals of critical transitions in time series data.

669 citations


Journal ArticleDOI
TL;DR: In this paper, the authors study three-dimensional conformal field theories described by U(N) Chern-Simons theory at level k coupled to massless fermions in the fundamental representation and compute the exact planar free energy of the theory at finite temperature on ℝ2 as a function of the ’t-Hooft coupling λ=N/k.
Abstract: We study three-dimensional conformal field theories described by U(N) Chern–Simons theory at level k coupled to massless fermions in the fundamental representation. By solving a Schwinger–Dyson equation in light-cone gauge, we compute the exact planar free energy of the theory at finite temperature on ℝ2 as a function of the ’t Hooft coupling λ=N/k. Employing a dimensional reduction regularization scheme, we find that the free energy vanishes at |λ|=1; the conformal theory does not exist for |λ|>1. We analyze the operator spectrum via the anomalous conservation relation for higher spin currents, and in particular show that the higher spin currents do not develop anomalous dimensions at leading order in 1/N. We present an integral equation whose solution in principle determines all correlators of these currents at leading order in 1/N and present explicit perturbative results for all three-point functions up to two loops. We also discuss a light-cone Hamiltonian formulation of this theory where a W ∞ algebra arises. The maximally supersymmetric version of our theory is ABJ model with one gauge group taken to be U(1), demonstrating that a pure higher spin gauge theory arises as a limit of string theory.

424 citations


Journal ArticleDOI
TL;DR: Based on the analysis of conservation needs, seed dispersal research should be carried out at larger spatial scales in heterogenous landscapes, examining the simultaneous impacts of multiple drivers on community-wide seed disperseal networks.

394 citations


Journal ArticleDOI
TL;DR: This work establishes a unique way to obtain colossal magnetodielectricity, independent of any striction effects, by engineering the asymmetric hopping contribution to the dielectric constant via the tuning of the relative-spin orientations between neighboring magnetic ions in a transition-metal oxide system.
Abstract: We report magnetic, dielectric, and magnetodielectric responses of the pure monoclinic bulk phase of partially disordered La2NiMnO6, exhibiting a spectrum of unusual properties and establish that this compound is an intrinsically multiglass system with a large magnetodielectric coupling (8%-20%) over a wide range of temperatures (150-300 K). Specifically, our results establish a unique way to obtain colossal magnetodielectricity, independent of any striction effects, by engineering the asymmetric hopping contribution to the dielectric constant via the tuning of the relative-spin orientations between neighboring magnetic ions in a transition-metal oxide system. We discuss the role of antisite (Ni-Mn) disorder in emergence of these unusual properties.

371 citations


Journal ArticleDOI
21 Dec 2012-Cell
TL;DR: SCR7 impedes tumor progression in mouse models and when coadministered with DSB-inducing therapeutic modalities enhances their sensitivity significantly, suggesting this inhibitor to target NHEJ offers a strategy toward the treatment of cancer and improvement of existing regimens.

343 citations


Journal ArticleDOI
TL;DR: The synthesis of a novel DPP-DPP copolymer in combination with the demonstration of transistors with extremely high electron mobility makes this work an important step toward a new family of DPP -DPPCopolymers for application in the general area of organic optoelectronics.
Abstract: In this communication, we report the synthesis of a novel diketopyrrolopyrrole–diketopyrrolopyrrole (DPP–DPP)-based conjugated copolymer and its application in high-mobility organic field-effect transistors. Copolymerization of DPP with DPP yields a copolymer with exceptional properties such as extended absorption characteristics (up to ∼1100 nm) and field-effect electron mobility values of >1 cm2 V–1 s–1. The synthesis of this novel DPP–DPP copolymer in combination with the demonstration of transistors with extremely high electron mobility makes this work an important step toward a new family of DPP–DPP copolymers for application in the general area of organic optoelectronics.

Journal ArticleDOI
TL;DR: In this article, the authors studied the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets and showed that spatially extended multi-phase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t(TI)/t(ff)) falls below a critical threshold of approximate to 10.
Abstract: Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t(TI)/t(ff)) falls below a critical threshold of approximate to 10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Ha filaments. These cold gas clumps and filaments ``rain'' down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t(TI)/t(ff) > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t(TI)/t(ff) less than or similar to 10. This occurs despite the fact that the energy from AGN jets is supplied to the core in a highly anisotropic fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.

Journal ArticleDOI
TL;DR: An explicit, exact-repair code for the point on the storage-bandwidth tradeoff corresponding to the minimum possible repair bandwidth, and an ability of the code to perform repair through mere transfer of data as repair by transfer are named.
Abstract: Regenerating codes are a class of recently developed codes for distributed storage that, like Reed-Solomon codes, permit data recovery from any subset of nodes within the -node network. However, regenerating codes possess in addition, the ability to repair a failed node by connecting to an arbitrary subset of nodes. It has been shown that for the case of functional repair, there is a tradeoff between the amount of data stored per node and the bandwidth required to repair a failed node. A special case of functional repair is exact repair where the replacement node is required to store data identical to that in the failed node. Exact repair is of interest as it greatly simplifies system implementation. The first result of this paper is an explicit, exact-repair code for the point on the storage-bandwidth tradeoff corresponding to the minimum possible repair bandwidth, for the case when . This code has a particularly simple graphical description, and most interestingly has the ability to carry out exact repair without any need to perform arithmetic operations. We term this ability of the code to perform repair through mere transfer of data as repair by transfer. The second result of this paper shows that the interior points on the storage-bandwidth tradeoff cannot be achieved under exact repair, thus pointing to the existence of a separate tradeoff under exact repair. Specifically, we identify a set of scenarios which we term as “helper node pooling,” and show that it is the necessity to satisfy such scenarios that overconstrains the system.

Journal Article
TL;DR: In this paper, the scattering of light with altered frequency has been investigated in many crystals, and much valuable information has been accumulated, and their relation to theories of solid state are clearly matters of great interest.
Abstract: Since its discovery1, early in 1928, the scattering of light with altered frequency has been investigated in many crystals, and much valuable information has been accumulated. The significance of the results and their relation to theories of solid state are clearly matters of great interest.

Journal ArticleDOI
07 Sep 2012-Science
TL;DR: It is demonstrated that collective motion could evolve as a response to predation, without prey being able to detect and respond to predators.
Abstract: Movement in animal groups is highly varied and ranges from seemingly disordered motion in swarms to coordinated aligned motion in flocks and schools. These social interactions are often thought to reduce risk from predators, despite a lack of direct evidence. We investigated risk-related selection for collective motion by allowing real predators (bluegill sunfish) to hunt mobile virtual prey. By fusing simulated and real animal behavior, we isolated predator effects while controlling for confounding factors. Prey with a tendency to be attracted toward, and to align direction of travel with, near neighbors tended to form mobile coordinated groups and were rarely attacked. These results demonstrate that collective motion could evolve as a response to predation, without prey being able to detect and respond to predators.

Journal ArticleDOI
TL;DR: In this article, a high surface area carbon composite with Fe3O4 nanoparticles is synthesized by pyrolysis of an iron containing metal organic framework (MOF).
Abstract: A high surface area carbon composite with Fe3O4 nanoparticles is synthesized by pyrolysis of an iron containing Metal Organic Framework (MOF). The composite can be prepared by annealing the MOF at different temperatures (500 °C and 600 °C), each case exhibiting unique properties in terms of the hydrophobic behaviour and surface area, resulting in specific applicability domains. We highlight the exceptional behaviour of this material as a magnetically separable and recyclable superadsorbent for removal and recovery of environmental pollutants (oil/hydrocarbon and dye/phenol).

Journal ArticleDOI
TL;DR: In future this room temperature optical ammonia sensor can be used for clinical and medical diagnosis for detecting low ammonia level in biological fluids, such as plasma, sweat, saliva, cerebrospinal liquid or biological samples in general for various biomedical applications in human.

Journal ArticleDOI
TL;DR: In this article, the authors studied the real-life experience of Jatropha farming in the southern India states of Tamil Nadu and Andhra Pradesh and found that 82% of the farmers had substituted former cropland for their Jatropha cultivation.
Abstract: Together with 106 farmers who started growing Jatropha (Jatropha curcas L.) in 2004-2006, this research sought to increase the knowledge around the real-life experience of Jatropha farming in the southern India states of Tamil Nadu and Andhra Pradesh. Launched as an alternative for diesel in India, Jatropha has been promoted as a non-edible plant that could grow on poor soils, yield oil-rich seeds for production of bio-diesel, and not compete directly with food production. Through interviews with the farmers, information was gathered regarding their socio-economic situation, the implementation and performance of their Jatropha plantations, and their reasons for continuing or discontinuing Jatropha cultivation. Results reveal that 82% of the farmers had substituted former cropland for their Jatropha cultivation. By 2010, 85% (n = 90) of the farmers who cultivated Jatropha in 2004 had stopped. Cultivating the crop did not give the economic returns the farmers anticipated, mainly due to a lack of information about the crop and its maintenance during cultivation and due to water scarcity. A majority of the farmers irrigated and applied fertilizer, and even pesticides. Many problems experienced by the farmers were due to limited knowledge about cultivating Jatropha caused by poor planning and implementation of the national Jatropha program. Extension services, subsidies, and other support were not provided as promised. The farmers who continued cultivation had means of income other than Jatropha and held hopes of a future Jatropha market. The lack of market structures, such as purchase agreements and buyers, as well as a low retail price for the seeds, were frequently stated as barriers to Jatropha cultivation. For Jatropha biodiesel to perform well, efforts are needed to improve yield levels and stability through genetic improvements and drought tolerance, as well as agriculture extension services to support adoption of the crop. Government programs will probably be more effective if implementing biodiesel production is conjoined with stimulating the demand for Jatropha biodiesel. To avoid food-biofuel competition, additional measures may be needed such as land-use restrictions for Jatropha producers and taxes on biofuels or biofuel feedstocks to improve the competitiveness of the food sector compared to the bioenergy sector.

Journal ArticleDOI
TL;DR: In this paper, a sliding-mode-control-based guidance law is proposed to intercept stationary, constant-velocity, and maneuvering targets at a desired impact angle, which is defined in terms of a desired line-of-sight angle, by selecting the missile's lateral acceleration to enforce terminal sliding mode on a switching surface designed using nonlinear engagement dynamics.
Abstract: In this paper, sliding-mode-control-based guidance laws to intercept stationary, constant-velocity, and maneuvering targets at a desired impact angle are proposed. The desired impact angle, which is defined in terms of a desired line-of-sight angle, is achieved in finite time by selecting the missile's lateral acceleration to enforce terminal sliding mode on a switching surface designed using nonlinear engagement dynamics. The conditions for capturability are also presented. In addition, by considering a three-degree-of-freedom linear-interceptor dynamic model and by following the procedure used to design a dynamic sliding-mode controller, the interceptor autopilot is designed as a simple static controller to track the lateral acceleration generated by the guidance law. Numerical simulation results are presented to validate the proposed guidance laws and the autopilot design for different initial engagement geometries and impact angles.

Proceedings ArticleDOI
01 Jul 2012
TL;DR: In this article, the authors extend the results of Gopalan et al. so as to permit recovery of an erased code symbol even in the presence of errors in local parity symbols.
Abstract: Motivated by applications to distributed storage, Gopalan et al recently introduced the interesting notion of information-symbol locality in a linear code. By this it is meant that each message symbol appears in a parity-check equation associated with small Hamming weight, thereby enabling recovery of the message symbol by examining a small number of other code symbols. This notion is expanded to the case when all code symbols, not just the message symbols, are covered by such “local” parity. In this paper, we extend the results of Gopalan et. al. so as to permit recovery of an erased code symbol even in the presence of errors in local parity symbols. We present tight bounds on the minimum distance of such codes and exhibit codes that are optimal with respect to the local error-correction property. As a corollary, we obtain an upper bound on the minimum distance of a concatenated code.

Journal ArticleDOI
03 May 2012-Nature
TL;DR: The separation of the orbital degree of freedom (orbiton) is observed using resonant inelastic X-ray scattering on the one-dimensional Mott insulator Sr2CuO3 to resolve an orbiton separating itself from spinons and propagating through the lattice as a distinct quasi-particle with a substantial dispersion in energy over momentum.
Abstract: When viewed as an elementary particle, the electron has spin and charge. When binding to the atomic nucleus, it also acquires an angular momentum quantum number corresponding to the quantized atomic orbital it occupies. Even if electrons in solids form bands and delocalize from the nuclei, in Mott insulators they retain their three fundamental quantum numbers: spin, charge and orbital1. The hallmark of one-dimensional physics is a breaking up of the elementary electron into its separate degrees of freedom2. The separation of the electron into independent quasi-particles that carry either spin (spinons) or charge (holons) was first observed fifteen years ago3. Here we report observation of the separation of the orbital degree of freedom (orbiton) using resonant inelastic X-ray scattering on the one-dimensional Mott insulator Sr2CuO3. We resolve an orbiton separating itself from spinons and propagating through the lattice as a distinct quasi-particle with a substantial dispersion in energy over momentum, of about 0.2 electronvolts, over nearly one Brillouin zone.

Journal ArticleDOI
TL;DR: The constructions presented in this paper are the first explicit constructions of regenerating codes that achieve the cut-set bound, and Interference alignment is a theme that runs throughout the paper.
Abstract: Regenerating codes are a class of recently developed codes for distributed storage that, like Reed-Solomon codes, permit data recovery from any arbitrary k of n nodes. However regenerating codes possess in addition, the ability to repair a failed node by connecting to any arbitrary d nodes and downloading an amount of data that is typically far less than the size of the data file. This amount of download is termed the repair bandwidth. Minimum storage regenerating (MSR) codes are a subclass of regenerating codes that require the least amount of network storage; every such code is a maximum distance separable (MDS) code. Further, when a replacement node stores data identical to that in the failed node, the repair is termed as exact. The four principal results of the paper are (a) the explicit construction of a class of MDS codes for d = n - 1 ≥ 2k - 1 termed the MISER code, that achieves the cut-set bound on the repair bandwidth for the exact repair of systematic nodes, (b) proof of the necessity of interference alignment in exact-repair MSR codes, (c) a proof showing the impossibility of constructing linear, exact-repair MSR codes for d <; 2k - 3 in the absence of symbol extension, and (d) the construction, also explicit, of high-rate MSR codes for d = k + 1. Interference alignment (IA) is a theme that runs throughout the paper: the MISER code is built on the principles of IA and IA is also a crucial component to the nonexistence proof for d <; 2k - 3. To the best of our knowledge, the constructions presented in this paper are the first explicit constructions of regenerating codes that achieve the cut-set bound.

Journal ArticleDOI
TL;DR: In this paper, the band gap of bilayer sheets of semiconducting transition-metal dichalcogenides (TMDs) can be reduced by applying vertical compressive pressure.
Abstract: Using first-principles calculations we show that the band gap of bilayer sheets of semiconducting transition-metal dichalcogenides (TMDs) can be reduced smoothly by applying vertical compressive pressure. These materials undergo a universal reversible semiconductor-to-metal (S-M) transition at a critical pressure. The S-M transition is attributed to lifting of the degeneracy of the bands at the Fermi level caused by interlayer interactions via charge transfer from the metal to the chalcogen. The S-M transition can be reproduced even after incorporating the band gap corrections using hybrid functionals and the GW method. The ability to tune the band gap of TMDs in a controlled fashion over a wide range of energy opens up the possibility for its usage in a range of applications.

Journal ArticleDOI
TL;DR: This research quantifies the urban dynamics using temporal remote sensing data with the help of well-established landscape metrics to indicate that whole landscape is aggregating to a large patch in 2010 as compared to earlier years which was dominated by several small patches.

Journal ArticleDOI
TL;DR: A novel fluoranthene based fluorescent chemosensor for the detection of picric acid at the parts per billion (ppb) level was evaluated and Static fluorescence quenching was the dominant process by intercalative π-π interaction between fluoranhene (S(1)) and nitroaromatics.

Posted Content
TL;DR: This paper extends the results of Gopalan et.
Abstract: Motivated by applications to distributed storage, Gopalan \textit{et al} recently introduced the interesting notion of information-symbol locality in a linear code. By this it is meant that each message symbol appears in a parity-check equation associated with small Hamming weight, thereby enabling recovery of the message symbol by examining a small number of other code symbols. This notion is expanded to the case when all code symbols, not just the message symbols, are covered by such "local" parity. In this paper, we extend the results of Gopalan et. al. so as to permit recovery of an erased code symbol even in the presence of errors in local parity symbols. We present tight bounds on the minimum distance of such codes and exhibit codes that are optimal with respect to the local error-correction property. As a corollary, we obtain an upper bound on the minimum distance of a concatenated code.

Journal ArticleDOI
TL;DR: In this paper, size dependent linear free flexural vibration behavior of functionally graded (FG) nanoplates using the iso-geometric based finite element method was investigated using non-uniform rational B-splines.

Journal ArticleDOI
TL;DR: In this paper, a three-phase, five-level inverter topology with a single-dc source is presented by cascading a 3-level flying capacitor inverter with a flying H-bridge power cell in each phase.
Abstract: In this paper, a new three-phase, five-level inverter topology with a single-dc source is presented. The proposed topology is obtained by cascading a three-level flying capacitor inverter with a flying H-bridge power cell in each phase. This topology has redundant switching states for generating different pole voltages. By selecting appropriate switching states, the capacitor voltages can be balanced instantaneously (as compared to the fundamental) in any direction of the current, irrespective of the load power factor. Another important feature of this topology is that if any H-bridge fails, it can be bypassed and the configuration can still operate as a three-level inverter at its full power rating. This feature improves the reliability of the circuit. A 3-kW induction motor is run with the proposed topology for the full modulation range. The effectiveness of the capacitor balancing algorithm is tested for the full range of speed and during the sudden acceleration of the motor.

Journal ArticleDOI
TL;DR: This Minireview describes the emerging trends in the field of nanocatalysis with implications towards green chemistry and sustainability.
Abstract: Designing and developing ideal catalyst paves the way to green chemistry. The fields of catalysis and nanoscience have been inextricably linked to each other for a long time. Thanks to the recent advances in characterization techniques, the old technology has been revisited with a new scope. The last decade has witnessed a flood of research activity in the field of nanocatalysis, with most of the studies focusing on the effect of size on catalytic properties. This led to the development of much greener catalysts with higher activity, selectivity and greater ease of separation from the reaction medium. This Minireview describes the emerging trends in the field of nanocatalysis with implications towards green chemistry and sustainability.

Journal ArticleDOI
TL;DR: In this article, a commercial purity (99.8%) magnesium single crystals were subjected to plane strain compression (PSC) along the c-axis at 200 and 370 degrees C and a constant strain rate of 10(-3) s(-1).