scispace - formally typeset
Search or ask a question
Institution

International Institute for Applied Systems Analysis

NonprofitLaxenburg, Austria
About: International Institute for Applied Systems Analysis is a nonprofit organization based out in Laxenburg, Austria. It is known for research contribution in the topics: Population & Greenhouse gas. The organization has 1369 authors who have published 5075 publications receiving 280467 citations. The organization is also known as: IIASA.


Papers
More filters
Journal ArticleDOI
TL;DR: The SSP narratives as discussed by the authors is a set of five qualitative descriptions of future changes in demographics, human development, economy and lifestyle, policies and institutions, technology, and environment and natural resources, which can serve as a basis for integrated scenarios of emissions and land use, as well as climate impact, adaptation and vulnerability analyses.
Abstract: Long-term scenarios play an important role in research on global environmental change. The climate change research community is developing new scenarios integrating future changes in climate and society to investigate climate impacts as well as options for mitigation and adaptation. One component of these new scenarios is a set of alternative futures of societal development known as the shared socioeconomic pathways (SSPs). The conceptual framework for the design and use of the SSPs calls for the development of global pathways describing the future evolution of key aspects of society that would together imply a range of challenges for mitigating and adapting to climate change. Here we present one component of these pathways: the SSP narratives, a set of five qualitative descriptions of future changes in demographics, human development, economy and lifestyle, policies and institutions, technology, and environment and natural resources. We describe the methods used to develop the narratives as well as how these pathways are hypothesized to produce particular combinations of challenges to mitigation and adaptation. Development of the narratives drew on expert opinion to (1) identify key determinants of these challenges that were essential to incorporate in the narratives and (2) combine these elements in the narratives in a manner consistent with scholarship on their inter-relationships. The narratives are intended as a description of plausible future conditions at the level of large world regions that can serve as a basis for integrated scenarios of emissions and land use, as well as climate impact, adaptation and vulnerability analyses.

1,606 citations

Journal ArticleDOI
TL;DR: In this paper, the relationship between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N2O), has been re-examined, us- ing known global atmospheric removal rates and concentra- tion growth of N2O as a proxy for overall emissions.
Abstract: The relationship, on a global basis, between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N2O), has been re-examined, us- ing known global atmospheric removal rates and concentra- tion growth of N2O as a proxy for overall emissions. For both the pre-industrial period and in recent times, after taking into account the large-scale changes in synthetic N fertiliser pro- duction, we find an overall conversion factor of 3-5% from newly fixed N to N 2O-N. We assume the same factor to be valid for biofuel production systems. It is covered only in part by the default conversion factor for "direct" emissions from agricultural crop lands (1%) estimated by IPCC (2006), and the default factors for the "indirect" emissions (follow- ing volatilization/deposition and leaching/runoff of N: 0.35- 0.45%) cited therein. However, as we show in the paper, when additional emissions included in the IPCC methodol- ogy, e.g. those from livestock production, are included, the total may not be inconsistent with that given by our "top- down" method. When the extra N2O emission from biofuel production is calculated in "CO2-equivalent" global warm- ing terms, and compared with the quasi-cooling effect of "saving" emissions of fossil fuel derived CO2, the outcome is that the production of commonly used biofuels, such as biodiesel from rapeseed and bioethanol from corn (maize), depending on N fertilizer uptake efficiency by the plants, can contribute as much or more to global warming by N2O emis- sions than cooling by fossil fuel savings. Crops with less N demand, such as grasses and woody coppice species, have more favourable climate impacts. This analysis only consid- ers the conversion of biomass to biofuel. It does not take into account the use of fossil fuel on the farms and for fertil- izer and pesticide production, but it also neglects the produc- tion of useful co-products. Both factors partially compensate each other. This needs to be analyzed in a full life cycle as- sessment.

1,364 citations

Journal ArticleDOI
TL;DR: In the ocean, the lifetime of Nr is less well known but seems to be longer than in terrestrial ecosystems and may represent an important long-term source of N2O that will respond very slowly to control measures on the sources of NR from which it is produced.
Abstract: Global nitrogen fixation contributes 413 Tg of reactive nitrogen (Nr) to terrestrial and marine ecosystems annually of which anthropogenic activities are responsible for half, 210 Tg N. The majority of the transformations of anthropogenic Nr are on land (240 Tg N yr−1) within soils and vegetation where reduced Nr contributes most of the input through the use of fertilizer nitrogen in agriculture. Leakages from the use of fertilizer Nr contribute to nitrate (NO3−) in drainage waters from agricultural land and emissions of trace Nr compounds to the atmosphere. Emissions, mainly of ammonia (NH3) from land together with combustion related emissions of nitrogen oxides (NOx), contribute 100 Tg N yr−1 to the atmosphere, which are transported between countries and processed within the atmosphere, generating secondary pollutants, including ozone and other photochemical oxidants and aerosols, especially ammonium nitrate (NH4NO3) and ammonium sulfate (NH4)2SO4. Leaching and riverine transport of NO3 contribute 40–70 Tg N yr−1 to coastal waters and the open ocean, which together with the 30 Tg input to oceans from atmospheric deposition combine with marine biological nitrogen fixation (140 Tg N yr−1) to double the ocean processing of Nr. Some of the marine Nr is buried in sediments, the remainder being denitrified back to the atmosphere as N2 or N2O. The marine processing is of a similar magnitude to that in terrestrial soils and vegetation, but has a larger fraction of natural origin. The lifetime of Nr in the atmosphere, with the exception of N2O, is only a few weeks, while in terrestrial ecosystems, with the exception of peatlands (where it can be 102–103 years), the lifetime is a few decades. In the ocean, the lifetime of Nr is less well known but seems to be longer than in terrestrial ecosystems and may represent an important long-term source of N2O that will respond very slowly to control measures on the sources of Nr from which it is produced.

1,330 citations

Journal ArticleDOI
15 Aug 2013-Nature
TL;DR: The mechanisms and impacts of climate extremes on the terrestrial carbon cycle are explored, and a pathway to improve the understanding of present and future impacts ofClimate extremes onThe terrestrial carbon budget is proposed.
Abstract: The terrestrial biosphere is a key component of the global carbon cycle and its carbon balance is strongly influenced by climate. Continuing environmental changes are thought to increase global terrestrial carbon uptake. But evidence is mounting that climate extremes such as droughts or storms can lead to a decrease in regional ecosystem carbon stocks and therefore have the potential to negate an expected increase in terrestrial carbon uptake. Here we explore the mechanisms and impacts of climate extremes on the terrestrial carbon cycle, and propose a pathway to improve our understanding of present and future impacts of climate extremes on the terrestrial carbon budget.

1,290 citations

Journal ArticleDOI
07 Feb 2008-Nature
TL;DR: This work measures the speed of population ageing by using conventional measures and new ones that take changes in longevity into account for the world as a whole and for 13 major regions and indicates a continuous ageing of the world’s population throughout the century.
Abstract: The future paths of population ageing result from specific combinations of declining fertility and increasing life expectancies in different parts of the world. Here we measure the speed of population ageing by using conventional measures and new ones that take changes in longevity into account for the world as a whole and for 13 major regions. We report on future levels of indicators of ageing and the speed at which they change. We show how these depend on whether changes in life expectancy are taken into account. We also show that the speed of ageing is likely to increase over the coming decades and to decelerate in most regions by mid-century. All our measures indicate a continuous ageing of the world's population throughout the century. The median age of the world's population increases from 26.6 years in 2000 to 37.3 years in 2050 and then to 45.6 years in 2100, when it is not adjusted for longevity increase. When increases in life expectancy are taken into account, the adjusted median age rises from 26.6 in 2000 to 31.1 in 2050 and only to 32.9 in 2100, slightly less than what it was in the China region in 2005. There are large differences in the regional patterns of ageing. In North America, the median age adjusted for life expectancy change falls throughout almost the entire century, whereas the conventional median age increases significantly. Our assessment of trends in ageing is based on new probabilistic population forecasts. The probability that growth in the world's population will end during this century is 88%, somewhat higher than previously assessed. After mid-century, lower rates of population growth are likely to coincide with slower rates of ageing.

1,233 citations


Authors

Showing all 1418 results

NameH-indexPapersCitations
Martin A. Nowak14859194394
Paul J. Crutzen13046180651
Andreas Richter11076948262
David G. Streets10636442154
Drew Shindell10234049481
Wei Liu102292765228
Jean-Francois Lamarque10038555326
Frank Dentener9722058666
James W. Vaupel8943434286
Keywan Riahi8731858030
Larry W. Horowitz8525328706
Robert J. Scholes8425337019
Mark A. Sutton8342330716
Brian Walsh8223329589
Börje Johansson8287130985
Network Information
Related Institutions (5)
Wageningen University and Research Centre
54.8K papers, 2.6M citations

87% related

University of Exeter
50.6K papers, 1.7M citations

85% related

Lancaster University
44.5K papers, 1.6M citations

85% related

ETH Zurich
122.4K papers, 5.1M citations

85% related

University of Maryland, College Park
155.9K papers, 7.2M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202360
202263
2021414
2020406
2019383
2018325