scispace - formally typeset
Search or ask a question
Institution

International Institute for Applied Systems Analysis

NonprofitLaxenburg, Austria
About: International Institute for Applied Systems Analysis is a nonprofit organization based out in Laxenburg, Austria. It is known for research contribution in the topics: Population & Greenhouse gas. The organization has 1369 authors who have published 5075 publications receiving 280467 citations. The organization is also known as: IIASA.


Papers
More filters
Journal ArticleDOI
02 Aug 2001-Nature
TL;DR: There is around an 85 per cent chance that the world's population will stop growing before the end of the century, and for different regions, the date and size of the peak population will vary considerably.
Abstract: There has been enormous concern about the consequences of human population growth for the environment and for social and economic development. But this growth is likely to come to an end in the foreseeable future. Improving on earlier methods of probabilistic forecasting, here we show that there is around an 85 per cent chance that the world's population will stop growing before the end of the century. There is a 60 per cent probability that the world's population will not exceed 10 billion people before 2100, and around a 15 per cent probability that the world's population at the end of the century will be lower than it is today. For different regions, the date and size of the peak population will vary considerably....

654 citations

Journal ArticleDOI
08 Oct 2020-Nature
TL;DR: A global N2O inventory is presented that incorporates both natural and anthropogenic sources and accounts for the interaction between nitrogen additions and the biochemical processes that control N 2O emissions, using bottom-up, top-down and process-based model approaches.
Abstract: Nitrous oxide (N2O), like carbon dioxide, is a long-lived greenhouse gas that accumulates in the atmosphere. Over the past 150 years, increasing atmospheric N2O concentrations have contributed to stratospheric ozone depletion1 and climate change2, with the current rate of increase estimated at 2 per cent per decade. Existing national inventories do not provide a full picture of N2O emissions, owing to their omission of natural sources and limitations in methodology for attributing anthropogenic sources. Here we present a global N2O inventory that incorporates both natural and anthropogenic sources and accounts for the interaction between nitrogen additions and the biochemical processes that control N2O emissions. We use bottom-up (inventory, statistical extrapolation of flux measurements, process-based land and ocean modelling) and top-down (atmospheric inversion) approaches to provide a comprehensive quantification of global N2O sources and sinks resulting from 21 natural and human sectors between 1980 and 2016. Global N2O emissions were 17.0 (minimum-maximum estimates: 12.2-23.5) teragrams of nitrogen per year (bottom-up) and 16.9 (15.9-17.7) teragrams of nitrogen per year (top-down) between 2007 and 2016. Global human-induced emissions, which are dominated by nitrogen additions to croplands, increased by 30% over the past four decades to 7.3 (4.2-11.4) teragrams of nitrogen per year. This increase was mainly responsible for the growth in the atmospheric burden. Our findings point to growing N2O emissions in emerging economies-particularly Brazil, China and India. Analysis of process-based model estimates reveals an emerging N2O-climate feedback resulting from interactions between nitrogen additions and climate change. The recent growth in N2O emissions exceeds some of the highest projected emission scenarios3,4, underscoring the urgency to mitigate N2O emissions.

650 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluate the global impact of surface ozone on four types of agricultural crop using modelled global hourly ozone fields for the year 2000 and 2030, using the global 1 � � 1�

621 citations

Journal ArticleDOI
TL;DR: In this article, a spatial assessment of heat stress risk at a global level for four key crops, wheat, maize, rice and soybean, using the FAO/IIASA Global Agro-Ecological Zones Model (GAEZ) is presented.

616 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that CO2 emissions track the high end of the latest generation of emissions scenarios, due to lower than anticipated carbon intensity improvements of emerging economies and higher global gross domestic product growth.
Abstract: Efforts to limit climate change below a given temperature level require that global emissions of CO2 cumulated over time remain below a limited quota. This quota varies depending on the temperature level, the desired probability of staying below this level and the contributions of other gases. In spite of this restriction, global emissions of CO2 from fossil fuel combustion and cement production have continued to grow by 2.5% per year on average over the past decade. Two thirds of the CO2 emission quota consistent with a 2 °C temperature limit has already been used, and the total quota will likely be exhausted in a further 30 years at the 2014 emissions rates. We show that CO2 emissions track the high end of the latest generation of emissions scenarios, due to lower than anticipated carbon intensity improvements of emerging economies and higher global gross domestic product growth. In the absence of more stringent mitigation, these trends are set to continue and further reduce the remaining quota until the onset of a potential new climate agreement in 2020. Breaking current emission trends in the short term is key to retaining credible climate targets within a rapidly diminishing emission quota.

614 citations


Authors

Showing all 1418 results

NameH-indexPapersCitations
Martin A. Nowak14859194394
Paul J. Crutzen13046180651
Andreas Richter11076948262
David G. Streets10636442154
Drew Shindell10234049481
Wei Liu102292765228
Jean-Francois Lamarque10038555326
Frank Dentener9722058666
James W. Vaupel8943434286
Keywan Riahi8731858030
Larry W. Horowitz8525328706
Robert J. Scholes8425337019
Mark A. Sutton8342330716
Brian Walsh8223329589
Börje Johansson8287130985
Network Information
Related Institutions (5)
Wageningen University and Research Centre
54.8K papers, 2.6M citations

87% related

University of Exeter
50.6K papers, 1.7M citations

85% related

Lancaster University
44.5K papers, 1.6M citations

85% related

ETH Zurich
122.4K papers, 5.1M citations

85% related

University of Maryland, College Park
155.9K papers, 7.2M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202360
202263
2021414
2020406
2019383
2018325