scispace - formally typeset
Search or ask a question
Institution

International Institute for Applied Systems Analysis

NonprofitLaxenburg, Austria
About: International Institute for Applied Systems Analysis is a nonprofit organization based out in Laxenburg, Austria. It is known for research contribution in the topics: Population & Greenhouse gas. The organization has 1369 authors who have published 5075 publications receiving 280467 citations. The organization is also known as: IIASA.


Papers
More filters
Journal ArticleDOI
10 May 2002-Science
TL;DR: This work presents a simple but effective mechanism operating under full anonymity that shows that in voluntary public goods interactions, cooperators and defectors will coexist and shows that this result holds under very diverse assumptions on population structure and adaptation mechanisms.
Abstract: The evolution of cooperation among nonrelated individuals is one of the fundamental problems in biology and social sciences. Reciprocal altruism fails to provide a solution if interactions are not repeated often enough or groups are too large. Punishment and reward can be very effective but require that defectors can be traced and identified. Here we present a simple but effective mechanism operating under full anonymity. Optional participation can foil exploiters and overcome the social dilemma. In voluntary public goods interactions, cooperators and defectors will coexist. We show that this result holds under very diverse assumptions on population structure and adaptation mechanisms, leading usually not to an equilibrium but to an unending cycle of adjustments (a Red Queen type of evolution). Thus, voluntary participation offers an escape hatch out of some social traps. Cooperation can subsist in sizable groups even if interactions are not repeated, defectors remain anonymous, players have no memory, and assortment is purely random.

923 citations

Journal ArticleDOI
Nick Watts1, Markus Amann2, Nigel W. Arnell3, Sonja Ayeb-Karlsson4, Jessica Beagley1, Kristine Belesova5, Maxwell T. Boykoff6, Peter Byass7, Wenjia Cai8, Diarmid Campbell-Lendrum9, Stuart Capstick10, Jonathan Chambers11, Samantha Coleman1, Carole Dalin1, Meaghan Daly12, Niheer Dasandi13, Shouro Dasgupta, Michael Davies1, Claudia Di Napoli3, Paula Dominguez-Salas5, Paul Drummond1, Robert Dubrow14, Kristie L. Ebi15, Matthew J. Eckelman16, Paul Ekins1, Luis E. Escobar17, Lucien Georgeson18, Su Golder19, Delia Grace20, Hilary Graham12, Paul Haggar10, Ian Hamilton1, Stella M. Hartinger21, Jeremy J. Hess15, Shih Che Hsu1, Nick Hughes1, Slava Mikhaylov, Marcia P. Jimenez22, Ilan Kelman1, Harry Kennard1, Gregor Kiesewetter2, Patrick L. Kinney23, Tord Kjellstrom, Dominic Kniveton24, Pete Lampard19, Bruno Lemke25, Yang Liu26, Zhao Liu8, Melissa C. Lott27, Rachel Lowe5, Jaime Martinez-Urtaza28, Mark A. Maslin1, Lucy McAllister29, Alice McGushin1, Celia McMichael30, James Milner5, Maziar Moradi-Lakeh31, Karyn Morrissey32, Simon Munzert, Kris A. Murray5, Kris A. Murray33, Tara Neville9, Maria Nilsson7, Maquins Odhiambo Sewe7, Tadj Oreszczyn1, Matthias Otto25, Fereidoon Owfi, Olivia Pearman6, David Pencheon32, Ruth Quinn34, Mahnaz Rabbaniha, Elizabeth J. Z. Robinson3, Joacim Rocklöv7, Marina Romanello1, Jan C. Semenza35, Jodi D. Sherman14, Liuhua Shi, Marco Springmann18, Meisam Tabatabaei36, Jonathon Taylor, Joaquin Trinanes37, Joy Shumake-Guillemot, Bryan N. Vu26, Paul Wilkinson5, Matthew Winning1, Peng Gong8, Hugh Montgomery1, Anthony Costello1 
TL;DR: TRANSLATIONS For the Chinese, French, German, and Spanish translations of the abstract see Supplementary Materials section.

886 citations

Journal ArticleDOI
Corinne Le Quéré1, Robbie M. Andrew, Pierre Friedlingstein2, Stephen Sitch2, Julia Pongratz3, Andrew C. Manning1, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell4, Robert B. Jackson5, Thomas A. Boden6, Pieter P. Tans7, Oliver Andrews1, Vivek K. Arora, Dorothee C. E. Bakker1, Leticia Barbero8, Leticia Barbero9, Meike Becker10, Meike Becker11, Richard Betts12, Richard Betts2, Laurent Bopp13, Frédéric Chevallier14, Louise Chini15, Philippe Ciais14, Catherine E Cosca7, Jessica N. Cross7, Kim I. Currie16, Thomas Gasser17, Ian Harris1, Judith Hauck18, Vanessa Haverd4, Richard A. Houghton19, Christopher W. Hunt20, George C. Hurtt15, Tatiana Ilyina3, Atul K. Jain21, Etsushi Kato, Markus Kautz22, Ralph F. Keeling23, Kees Klein Goldewijk24, Kees Klein Goldewijk25, Arne Körtzinger26, Peter Landschützer3, Nathalie Lefèvre27, Andrew Lenton28, Andrew Lenton29, Sebastian Lienert30, Sebastian Lienert31, Ivan D. Lima19, Danica Lombardozzi32, Nicolas Metzl27, Frank J. Millero33, Pedro M. S. Monteiro34, David R. Munro35, Julia E. M. S. Nabel3, Shin-Ichiro Nakaoka36, Yukihiro Nojiri36, X. Antonio Padin37, Anna Peregon14, Benjamin Pfeil10, Benjamin Pfeil11, Denis Pierrot8, Denis Pierrot9, Benjamin Poulter38, Benjamin Poulter39, Gregor Rehder40, Janet J. Reimer41, Christian Rödenbeck3, Jörg Schwinger10, Roland Séférian14, Ingunn Skjelvan10, Benjamin D. Stocker, Hanqin Tian42, Bronte Tilbrook28, Bronte Tilbrook29, Francesco N. Tubiello43, Ingrid T. van der Laan-Luijkx44, Guido R. van der Werf45, Steven van Heuven46, Nicolas Viovy14, Nicolas Vuichard14, Anthony P. Walker6, Andrew J. Watson2, Andy Wiltshire12, Sönke Zaehle3, Dan Zhu14 
University of East Anglia1, University of Exeter2, Max Planck Society3, Commonwealth Scientific and Industrial Research Organisation4, Stanford University5, Oak Ridge National Laboratory6, National Oceanic and Atmospheric Administration7, Cooperative Institute for Marine and Atmospheric Studies8, Atlantic Oceanographic and Meteorological Laboratory9, Bjerknes Centre for Climate Research10, Geophysical Institute, University of Bergen11, Met Office12, École Normale Supérieure13, Centre national de la recherche scientifique14, University of Maryland, College Park15, National Institute of Water and Atmospheric Research16, International Institute for Applied Systems Analysis17, Alfred Wegener Institute for Polar and Marine Research18, Woods Hole Oceanographic Institution19, University of New Hampshire20, University of Illinois at Urbana–Champaign21, Karlsruhe Institute of Technology22, University of California, San Diego23, Netherlands Environmental Assessment Agency24, Utrecht University25, Leibniz Institute of Marine Sciences26, University of Paris27, Cooperative Research Centre28, Hobart Corporation29, Oeschger Centre for Climate Change Research30, University of Bern31, National Center for Atmospheric Research32, University of Miami33, Council of Scientific and Industrial Research34, Institute of Arctic and Alpine Research35, National Institute for Environmental Studies36, Spanish National Research Council37, Montana State University38, Goddard Space Flight Center39, Leibniz Institute for Baltic Sea Research40, University of Delaware41, Auburn University42, Food and Agriculture Organization43, Wageningen University and Research Centre44, VU University Amsterdam45, University of Groningen46
TL;DR: In this paper, the authors quantify the five major components of the global carbon budget and their uncertainties, and the resulting carbon budget imbalance (BIM) is a measure of imperfect data and understanding of the contemporary carbon cycle.
Abstract: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the high fossil emissions and the small SLAND consistent with El Nino conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.0 % (range of 0.8 to 3.0 %) based on national emissions projections for China, USA, and India, and projections of gross domestic product (GDP) corrected for recent changes in the carbon intensity of the economy for the rest of the world. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quere et al., 2016, 2015b, a, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017 (GCP, 2017).

884 citations

Journal ArticleDOI
TL;DR: In this paper, the credibility of bioenergy with carbon capture and storage as a climate change mitigation option is investigated. But its credibility is unproven and its widespread deployment in climate stabilization scenarios might become a dangerous distraction.
Abstract: Bioenergy with carbon capture and storage could be used to remove carbon dioxide from the atmosphere. However, its credibility as a climate change mitigation option is unproven and its widespread deployment in climate stabilization scenarios might become a dangerous distraction.

871 citations

Journal ArticleDOI
TL;DR: In this paper, the authors brought together forest sector C budgets for Canada, United States, Europe, Russia, and China that were derived from forest inventory information, allometric relationships, and supplementary data sets and models.
Abstract: There is general agreement that terrestrial systems in the Northern Hemisphere provide a significant sink for atmospheric CO2; however, estimates of the magnitude and distribution of this sink vary greatly. National forest inventories provide strong, measurement-based constraints on the magnitude of net forest carbon uptake. We brought together forest sector C budgets for Canada, the United States, Europe, Russia, and China that were derived from forest inventory information, allometric relationships, and supplementary data sets and models. Together, these suggest that northern forests and woodlands provided a total sink for 0.6–0.7 Pg of C per year (1 Pg = 1015 g) during the early 1990s, consisting of 0.21 Pg C/yr in living biomass, 0.08 Pg C/yr in forest products, 0.15 Pg C/yr in dead wood, and 0.13 Pg C/yr in the forest floor and soil organic matter. Estimates of changes in soil C pools have improved but remain the least certain terms of the budgets. Over 80% of the estimated sink occurred in one-third of the forest area, in temperate regions affected by fire suppression, agricultural abandonment, and plantation forestry. Growth in boreal regions was offset by fire and other disturbances that vary considerably from year to year. Comparison with atmospheric inversions suggests significant land C sinks may occur outside the forest sector.

864 citations


Authors

Showing all 1418 results

NameH-indexPapersCitations
Martin A. Nowak14859194394
Paul J. Crutzen13046180651
Andreas Richter11076948262
David G. Streets10636442154
Drew Shindell10234049481
Wei Liu102292765228
Jean-Francois Lamarque10038555326
Frank Dentener9722058666
James W. Vaupel8943434286
Keywan Riahi8731858030
Larry W. Horowitz8525328706
Robert J. Scholes8425337019
Mark A. Sutton8342330716
Brian Walsh8223329589
Börje Johansson8287130985
Network Information
Related Institutions (5)
Wageningen University and Research Centre
54.8K papers, 2.6M citations

87% related

University of Exeter
50.6K papers, 1.7M citations

85% related

Lancaster University
44.5K papers, 1.6M citations

85% related

ETH Zurich
122.4K papers, 5.1M citations

85% related

University of Maryland, College Park
155.9K papers, 7.2M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202360
202263
2021414
2020406
2019383
2018325