scispace - formally typeset
Search or ask a question
Institution

International Institute for Applied Systems Analysis

NonprofitLaxenburg, Austria
About: International Institute for Applied Systems Analysis is a nonprofit organization based out in Laxenburg, Austria. It is known for research contribution in the topics: Population & Greenhouse gas. The organization has 1369 authors who have published 5075 publications receiving 280467 citations. The organization is also known as: IIASA.


Papers
More filters
Journal ArticleDOI
01 Jan 2003-Ecology
TL;DR: In this paper, an individual-based model (IBM) with spatially localized dispersal and competition, and a deterministic approximation to the IBM describing the dynamics of the first and second spatial moments are described.
Abstract: How great an effect does self-generated spatial structure have on logistic population growth? Results are described from an individual-based model (IBM) with spatially localized dispersal and competition, and from a deterministic approximation to the IBM describing the dynamics of the first and second spatial moments. The dynamical system incorporates a novel closure that gives a close approximation to the IBM in the presence of strong spatial structure. Population growth given by the spatial logistic model can differ greatly from that of the nonspatial logistic equation. Numerical simulations show that populations may grow more slowly or more rapidly than would be expected from the nonspatial model, and may reach their maximum rate of increase at densities other than half of the carrying capacity. Populations can achieve asymptotic densities substantially greater than or less than the carrying capacity of the nonspatial logistic model, and can even tend towards extinction. These properties of the spatial logistic model are caused by local dispersal and competition that affect spatial structure, which in turn affects population growth. Accounting for these local spatial processes brings the theory of single-species population growth a step closer to the growth of real spatially structured populations.

300 citations

Journal ArticleDOI
07 Aug 2009-Science
TL;DR: It is shown that higher variability in link strengths stabilizes food webs only when webs are relatively small, whereas larger webs are instead destabilized, and a new power law is revealed describing how food-web stability scales with the number of species and their connectance.
Abstract: Insights into what stabilizes natural food webs have always been limited by a fundamental dilemma: Studies either need to make unwarranted simplifying assumptions, which undermines their relevance, or only examine few replicates of small food webs, which hampers the robustness of findings. We used generalized modeling to study several billion replicates of food webs with nonlinear interactions and up to 50 species. In this way, first we show that higher variability in link strengths stabilizes food webs only when webs are relatively small, whereas larger webs are instead destabilized. Second, we reveal a new power law describing how food-web stability scales with the number of species and their connectance. Third, we report two universal rules: Food-web stability is enhanced when (i) species at a high trophic level feed on multiple prey species and (ii) species at an intermediate trophic level are fed upon by multiple predator species.

300 citations

Journal ArticleDOI
TL;DR: In this paper, a food first paradigm was applied in the estimations of land potentially available for the production of biofuel feedstocks, without putting at risk food supply or nature conservation.
Abstract: Europe's agricultural land (including Ukraine) comprise of 164 million hectares of cultivated land and 76 million hectares of permanent pasture. A "food first" paradigm was applied in the estimations of land potentially available for the production of biofuel feedstocks, without putting at risk food supply or nature conservation. Three land conversion scenarios were formulated: (i) A base scenario, that reflects developments under current policy settings and respects current trends in nature conservation and organic farming practices, by assuming moderate overall yield increases; (ii) an environment oriented scenario with higher emphasis on sustainable farming practices and maintenance of biodiversity; and (iii) an energy oriented scenario considering more substantial land use conversions including the use of pasture land. By 2030 some 44-53 million hectares of cultivated land could be used for bioenergy feed-stock production. The energy oriented scenario includes an extra 19 million hectares pasture land for feedstocks for second-generation biofuel production chains. Available land is foremost to be found in Eastern Europe, where substantial cultivated areas can be freed up through sustainable gains in yield in the food and feed sector. Agricultural residues of food and feed crops may provide an additional source for biofuel production. When assuming that up to 50% of crop residues can be used without risks for agricultural sustainability, we estimate that up to 246 Mt agricultural residues could be available for biofuel production, comparable to feedstock plantations of some 15-20 million hectares.

297 citations

Journal ArticleDOI
21 Jul 2021
TL;DR: In this paper, the authors conducted a systematic literature review and meta-analysis to assess the range of future global food security projections to 2050 and found that the total global food demand was expected to increase by 35% to 56% between 2010 and 2050, while population at risk of hunger is expected to change by −91% to +8%.
Abstract: Quantified global scenarios and projections are used to assess long-term future global food security under a range of socio-economic and climate change scenarios. Here, we conducted a systematic literature review and meta-analysis to assess the range of future global food security projections to 2050. We reviewed 57 global food security projection and quantitative scenario studies that have been published in the past two decades and discussed the methods, underlying drivers, indicators and projections. Across five representative scenarios that span divergent but plausible socio-economic futures, the total global food demand is expected to increase by 35% to 56% between 2010 and 2050, while population at risk of hunger is expected to change by −91% to +8% over the same period. If climate change is taken into account, the ranges change slightly (+30% to +62% for total food demand and −91% to +30% for population at risk of hunger) but with no statistical differences overall. The results of our review can be used to benchmark new global food security projections and quantitative scenario studies and inform policy analysis and the public debate on the future of food.

297 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of China's water conservancy development, and illustrate the socioeconomic, environmental and ecological impacts, as well as key measures since the 1950s.
Abstract: China's water policies in the past decades have relied heavily on the construction of massive water conservancy projects in the form of dams and reservoirs, water transfer projects, and irrigation infrastructure. These facilities have brought tremendous economic and social benefits but also posed many adverse impacts on the eco-environment and society. With the intensification of water scarcity, China's future water conservancy development is facing tremendous challenge of supporting the continuous economic development while protecting the water resources and the dependent ecosystems. This paper provides an overview of China's water conservancy development, and illustrates the socioeconomic, environmental and ecological impacts. A narrative of attitude changes of the central government towards water conservancy, as well as key measures since the 1950s is presented. The strategic water resources management plan set by the central government in its Document No. 1 of 2011 is elaborated with focus on the three stringent controlling “redlines” concerning national water use, water use efficiency and water pollution and the huge investments poised to finance their implementation. We emphasize that realizing the goals set in the strategic plan requires paradigm shifts of the water conservancy development towards maximizing economic and natural capitals, prioritizing investment to preserve intact ecosystems and to restore degraded ecosystems, adapting climate change, balancing construction of new water projects and rejuvenation of existing projects, and managing both “blue” (surface/groundwater) and “green” water (soil water).

293 citations


Authors

Showing all 1418 results

NameH-indexPapersCitations
Martin A. Nowak14859194394
Paul J. Crutzen13046180651
Andreas Richter11076948262
David G. Streets10636442154
Drew Shindell10234049481
Wei Liu102292765228
Jean-Francois Lamarque10038555326
Frank Dentener9722058666
James W. Vaupel8943434286
Keywan Riahi8731858030
Larry W. Horowitz8525328706
Robert J. Scholes8425337019
Mark A. Sutton8342330716
Brian Walsh8223329589
Börje Johansson8287130985
Network Information
Related Institutions (5)
Wageningen University and Research Centre
54.8K papers, 2.6M citations

87% related

University of Exeter
50.6K papers, 1.7M citations

85% related

Lancaster University
44.5K papers, 1.6M citations

85% related

ETH Zurich
122.4K papers, 5.1M citations

85% related

University of Maryland, College Park
155.9K papers, 7.2M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202360
202263
2021414
2020406
2019383
2018325