scispace - formally typeset
Search or ask a question
Institution

Nankai University

EducationTianjin, China
About: Nankai University is a education organization based out in Tianjin, China. It is known for research contribution in the topics: Catalysis & Adsorption. The organization has 42964 authors who have published 51866 publications receiving 1127896 citations. The organization is also known as: Nánkāi Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: The results indicate that both the simple integration model and the embedding integration model can greatly improve the recognition ability for the minority financial distress samples, and the embedded integration model is even more preferred because it also significantly outperforms the simple Integration model.

195 citations

Journal ArticleDOI
TL;DR: In this paper, a short review of recent advances made in the application of transition metal vanadium oxides and vanadates is presented, with the illustration of the effect of crystal structure, composition, and morphology on the battery performance.
Abstract: Transition metal vanadium oxides and vanadates have been widely investigated as possible active materials for primary and rechargeable lithium batteries. As compared to the classic lithium-insertion compounds such as LiCoO2, the composite vanadium oxides and vanadates have the prominent advantages of high theoretical capacities owing to multistep reductions and more electron transfer upon lithium intercalation. This short review presents a survey of recent advances made in the application of transition metal vanadium oxides and vanadates. Particularly, the structure, synthesis and electrochemical properties of silver vanadium oxides (e.g., AgVO3, Ag2V4O11 and Ag4V2O6F2) and copper vanadates (e.g., CuV2O6, Cu2.33V4O11 and Cu1.1V4O11) are discussed, with the illustration of the effect of crystal structure, composition, and morphology on the battery performance. Benefits gained from reducing the particle size have been particularly demonstrated.

195 citations

Journal ArticleDOI
Wenwei Liu1, Shuqi Chen1, Zhancheng Li1, Hua Cheng1, Ping Yu1, Jianxiong Li1, Jianguo Tian1 
TL;DR: The proposed polarization converter can aid in the development of novel plasmonic polarization devices, and can help to overcome certain limitations of the customary designs that have been proposed thus far.
Abstract: We present the design specifications and in-depth analysis of a terahertz (THz) broadband cross-polarization converter composed of a single-layer metasurface. This device can convert linearly polarized light into its cross-polarization in transmission mode. Different from other polarization conversion devices, this effect results from the suppression and enhancement for different electric components. The broadband characteristic is also achieved by specific partial symmetries designed in the structure. The proposed polarization converter can aid in the development of novel plasmonic polarization devices, and can help to overcome certain limitations of the customary designs that have been proposed thus far.

195 citations

Journal ArticleDOI
TL;DR: The porous structure, high electro-conductivity, and good wettability of electrolyte to cathode lead to reduced electrochemical polarization of the battery and further result in high performance and provides an alternative approach towards clean recycling and utilization of CO2.
Abstract: Developing rechargeable Na–CO2 batteries is significant for energy conversion and utilization of CO2. However, the reported batteries in pure CO2 atmosphere are non-rechargeable with limited discharge capacity of 200 mAh g−1. Herein, we realized the rechargeability of a Na–CO2 battery, with the proposed and demonstrated reversible reaction of 3 CO2+4 Na↔2 Na2CO3+C. The battery consists of a Na anode, an ether-based electrolyte, and a designed cathode with electrolyte-treated multi-wall carbon nanotubes, and shows reversible capacity of 60000 mAh g−1 at 1 A g−1 (≈1000 Wh kg−1) and runs for 200 cycles with controlled capacity of 2000 mAh g−1 at charge voltage <3.7 V. The porous structure, high electro-conductivity, and good wettability of electrolyte to cathode lead to reduced electrochemical polarization of the battery and further result in high performance. Our work provides an alternative approach towards clean recycling and utilization of CO2.

195 citations

Journal ArticleDOI
TL;DR: In this paper, the authors calculated pH values with different assumptions with regard to model inputs and particle phase states and found that the large discrepancy is due primarily to differences in the model assumptions adopted in previous studies.
Abstract: . pH is an important property of aerosol particles but is difficult to measure directly. Several studies have estimated the pH values for fine particles in northern China winter haze using thermodynamic models (i.e., E-AIM and ISORROPIA) and ambient measurements. The reported pH values differ widely, ranging from close to 0 (highly acidic) to as high as 7 (neutral). In order to understand the reason for this discrepancy, we calculated pH values using these models with different assumptions with regard to model inputs and particle phase states. We find that the large discrepancy is due primarily to differences in the model assumptions adopted in previous studies. Calculations using only aerosol-phase composition as inputs (i.e., reverse mode) are sensitive to the measurement errors of ionic species, and inferred pH values exhibit a bimodal distribution, with peaks between −2 and 2 and between 7 and 10, depending on whether anions or cations are in excess. Calculations using total (gas plus aerosol phase) measurements as inputs (i.e., forward mode) are affected much less by these measurement errors. In future studies, the reverse mode should be avoided whereas the forward mode should be used. Forward-mode calculations in this and previous studies collectively indicate a moderately acidic condition (pH from about 4 to about 5) for fine particles in northern China winter haze, indicating further that ammonia plays an important role in determining this property. The assumed particle phase state, either stable (solid plus liquid) or metastable (only liquid), does not significantly impact pH predictions. The unrealistic pH values of about 7 in a few previous studies (using the standard ISORROPIA model and stable state assumption) resulted from coding errors in the model, which have been identified and fixed in this study.

195 citations


Authors

Showing all 43397 results

NameH-indexPapersCitations
Yi Chen2174342293080
Peidong Yang183562144351
Jie Zhang1784857221720
Yang Yang1712644153049
Qiang Zhang1611137100950
Bin Liu138218187085
Jun Chen136185677368
Hui Li1352982105903
Jie Liu131153168891
Han Zhang13097058863
Jian Zhou128300791402
Chao Zhang127311984711
Wei Chen122194689460
Xuan Zhang119153065398
Yang Li117131963111
Network Information
Related Institutions (5)
Nanjing University
105.5K papers, 2.2M citations

95% related

University of Science and Technology of China
101K papers, 2.4M citations

94% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Fudan University
117.9K papers, 2.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023186
2022927
20215,274
20204,645
20194,261
20183,520