scispace - formally typeset
Search or ask a question
Institution

Nankai University

EducationTianjin, China
About: Nankai University is a education organization based out in Tianjin, China. It is known for research contribution in the topics: Catalysis & Adsorption. The organization has 42964 authors who have published 51866 publications receiving 1127896 citations. The organization is also known as: Nánkāi Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: The performance of halide perovskite materials in NLO devices such as upconversion lasers and ultrafast laser modulators is analyzed and several potential perspectives and research directions of these promising materials for nonlinear optics are presented.
Abstract: Halide perovskites provide an ideal platform for engineering highly promising semiconductor materials for a wide range of applications in optoelectronic devices, such as photovoltaics, light-emitting diodes, photodetectors, and lasers. More recently, increasing research efforts have been directed toward the nonlinear optical properties of halide perovskites because of their unique chemical and electronic properties, which are of crucial importance for advancing their applications in next-generation photonic devices. Here, the current state of the art in the field of nonlinear optics (NLO) in halide perovskite materials is reviewed. Halide perovskites are categorized into hybrid organic/inorganic and pure inorganic ones, and their second-, third-, and higher-order NLO properties are summarized. The performance of halide perovskite materials in NLO devices such as upconversion lasers and ultrafast laser modulators is analyzed. Several potential perspectives and research directions of these promising materials for nonlinear optics are presented.

192 citations

Journal ArticleDOI
TL;DR: In this article, the direct light propulsion of matter is observed on a macroscopic scale using a bulk graphene-based material, which is capable of absorbing light at various wavelengths and emitting energetic electrons efficiently enough to drive the bulk material, following Newtonian mechanics.
Abstract: It has been a great challenge to achieve the direct light manipulation of matter on a bulk scale. In this work the direct light propulsion of matter is observed on a macroscopic scale using a bulk graphene-based material. The unique structure and properties of graphene, and the novel morphology of the bulk three-dimensional linked graphene material make it capable not only of absorbing light at various wavelengths but also of emitting energetic electrons efficiently enough to drive the bulk material, following Newtonian mechanics. Thus, the unique photonic and electronic properties of individual graphene sheets are manifested in the response of the bulk state. These results offer an exciting opportunity to bring about bulkscale light manipulation with the potential to realize long-sought applications in areas such as the solar sail and space transportation driven directly by sunlight.

191 citations

Journal ArticleDOI
TL;DR: Metal-organic frameworks MIL-53, MIL-100 and MIL-101 demonstrate efficient enrichment of peptides with simultaneous exclusion of proteins from complex biological samples.

191 citations

Journal ArticleDOI
TL;DR: This work fabricates mesoporous thin-walled CuCo2O4@C with abundant nitrogen-doped nanotubes via coaxial electrospinning technique, which exhibits outstanding oxygen electrocatalytic activity and stability and is considered a promising electrocatalyst for Zn-air batteries.
Abstract: Rational design of optimal bifunctional oxygen electrocatalyst with low cost and high activity is greatly desired for realization of rechargeable Zn–air batteries. Herein, we fabricate mesoporous thin-walled CuCo2O4@C with abundant nitrogen-doped nanotubes via coaxial electrospinning technique. Benefiting from high catalytic activity of ultrasmall CuCo2O4 particles, double active specific surface area of mesoporous nanotubes, and strong coupling with N-doped carbon matrix, the obtained CuCo2O4@C exhibits outstanding oxygen electrocatalytic activity and stability, in terms of a positive onset potential (0.951 V) for oxygen reduction reaction (ORR) and a low overpotential (327 mV at 10 mA cm–2) for oxygen evolution reaction (OER). Significantly, when used as cathode catalyst for Zn-air batteries, CuCo2O4@C also displays a low charge–discharge voltage gap (0.79 V at 10 mA cm–2) and a long cycling life (up to 160 cycles for 80 h). With desirable architecture and excellent electrocatalytic properties, the CuCo...

191 citations

Journal ArticleDOI
Chao Chen1, Xiang Ni1, Han-Wen Tian1, Qian Liu, Dong-Sheng Guo1, Dan Ding1 
TL;DR: It is reported that the host-guest complexation between calix[5]arene and AIEgen can significantly turn off both the energy dissipation pathways of intersystem crossing and thermal deactivation, enabling the absorbed excitation energy mostly focusing on fluorescence emission.
Abstract: Host-guest complexation between calix[5]arene and aggregation-induced emission luminogen (AIEgen) can significantly turn off both the energy dissipation pathways of intersystem crossing and thermal deactivation, enabling the absorbed excitation energy to mostly focus on fluorescence emission. The co-assembly of calix[5]arene amphiphiles and AIEgens affords highly emissive supramolecular AIE nanodots thanks to their interaction severely restricting the intramolecular motion of AIEgens, which also show negligible generation of cytotoxic reactive oxygen species. In vivo studies with a peritoneal carcinomatosis-bearing mouse model indicate that such supramolecular AIE dots have rather low in vivo side toxicity and can serve as a superior fluorescent bioprobe for ultrasensitive fluorescence image-guided cancer surgery.

191 citations


Authors

Showing all 43397 results

NameH-indexPapersCitations
Yi Chen2174342293080
Peidong Yang183562144351
Jie Zhang1784857221720
Yang Yang1712644153049
Qiang Zhang1611137100950
Bin Liu138218187085
Jun Chen136185677368
Hui Li1352982105903
Jie Liu131153168891
Han Zhang13097058863
Jian Zhou128300791402
Chao Zhang127311984711
Wei Chen122194689460
Xuan Zhang119153065398
Yang Li117131963111
Network Information
Related Institutions (5)
Nanjing University
105.5K papers, 2.2M citations

95% related

University of Science and Technology of China
101K papers, 2.4M citations

94% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Fudan University
117.9K papers, 2.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023186
2022927
20215,274
20204,645
20194,261
20183,520