scispace - formally typeset
Search or ask a question
Institution

Nankai University

EducationTianjin, China
About: Nankai University is a education organization based out in Tianjin, China. It is known for research contribution in the topics: Catalysis & Adsorption. The organization has 42964 authors who have published 51866 publications receiving 1127896 citations. The organization is also known as: Nánkāi Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a solution-processed, tandem organic solar cell based on the small molecules DR3TSBDT and DPPEZnP-TBO was proposed.
Abstract: Careful selection of small-molecule materials provides solution-processed tandem organic solar cells with a boost in efficiency. An effective way to improve the power conversion efficiency of organic solar cells is to use a tandem architecture consisting of two subcells, so that a broader part of the solar spectrum can be used and the thermalization loss of photon energy can be minimized1. For a tandem cell to work well, it is important for the subcells to have complementary absorption characteristics and generate high and balanced (matched) currents. This requires a rather challenging effort to design and select suitable active materials for use in the subcells. Here, we report a high-performance solution-processed, tandem solar cell based on the small molecules DR3TSBDT and DPPEZnP-TBO, which offer efficient, complementary absorption when used as electron donor materials in the front and rear subcells, respectively. Optimized devices achieve a power conversion efficiency of 12.50% (verified 12.70%), which represents a new level of capability for solution-processed, organic solar cells.

508 citations

Journal ArticleDOI
Chun Li1, Xiaopeng Han1, Fangyi Cheng1, Yuxiang Hu1, Chengcheng Chen1, Jun Chen1 
TL;DR: The mild synthetic strategy allows the formation of homogeneous and strongly coupled spinel/carbon nanocomposites, which exhibit comparable activity but superior durability to Pt/C and serve as efficient catalysts to build rechargeable Zn–air and Li–air batteries.
Abstract: Spinel-type oxides are technologically important in many fields, including electronics, magnetism, catalysis and electrochemical energy storage and conversion. Typically, these materials are prepared by conventional ceramic routes that are energy consuming and offer limited control over shape and size. Moreover, for mixed-metal oxide spinels (for example, Co(x)Mn(3-x)O4), the crystallographic phase sensitively correlates with the metal ratio, posing great challenges to synthesize active product with simultaneously tuned phase and composition. Here we report a general synthesis of ultrasmall cobalt manganese spinels with tailored structural symmetry and composition through facile solution-based oxidation-precipitation and insertion-crystallization process at modest condition. As an example application, the nanocrystalline spinels catalyse the oxygen reduction/evolution reactions, showing phase and composition co-dependent performance. Furthermore, the mild synthetic strategy allows the formation of homogeneous and strongly coupled spinel/carbon nanocomposites, which exhibit comparable activity but superior durability to Pt/C and serve as efficient catalysts to build rechargeable Zn-air and Li-air batteries.

505 citations

Journal ArticleDOI
TL;DR: In this paper, a novel 2D boron structure with nonzero thickness was proposed based on an ab initio evolutionary structure search, which is considerably lower in energy than the recently proposed $\ensuremath{\alpha}$-sheet structure and its analogues.
Abstract: It has been widely accepted that planar boron structures, composed of triangular and hexagonal motifs are the most stable two-dimensional (2D) phases and likely precursors for boron nanostructures. Here we predict, based on an ab initio evolutionary structure search, a novel 2D boron structure with nonzero thickness, which is considerably, by $50\text{ }\text{ }\mathrm{meV}/\mathrm{atom}$, lower in energy than the recently proposed $\ensuremath{\alpha}$-sheet structure and its analogues. In particular, this phase is identified for the first time to have a distorted Dirac cone, after graphene and silicene the third elemental material with massless Dirac fermions. The buckling and coupling between the two sublattices not only enhance the energetic stability, but also are the key factors for the emergence of the distorted Dirac cone.

504 citations

Journal ArticleDOI
TL;DR: In this paper, a polyaniline-coated sulfur/conductive carbon-black (PANI@S/C) composites with different contents of sulfur are prepared via two facile processes including ball-milling and thermal treatment of the conductive carbon black and sublimed sulfur, followed by an in situ chemical oxidative polymerization of the aniline monomer in the presence of the S/C composite and ammonium persulfate.
Abstract: Polyaniline-coated sulfur/conductive-carbon-black (PANI@S/C) composites with different contents of sulfur are prepared via two facile processes including ball-milling and thermal treatment of the conductive carbon black and sublimed sulfur, followed by an in situ chemical oxidative polymerization of the aniline monomer in the presence of the S/C composite and ammonium persulfate. The microstructure and electrochemical performance of the as-prepared composites are investigated systematically. It is demonstrated that the polyaniline, with a thickness of ≈5–10 nm, is coated uniformly onto the surface of the S/C composite forming a core/shell structure. The PANI@S/C composite with 43.7 wt% sulfur presents the optimum electrochemical performance, including a large reversible capacity, a good coulombic efficiency, and a high active-sulfur utilization. The formation of the unique core/shell structure in the PANI@S/C composites is responsible for the improvement of the electrochemical performance. In particular, the high-rate charge/discharge capability of the PANI@S/C composites is excellent due to a synergistic effect on the high electrical conductivity from both the conductive carbon black in the matrix and the PANI on the surface. Even at an ultrahigh rate (10C), a maximum discharge capacity of 635.5 mA h per g of sulfur is still retained for the PANI@S/C composite after activation, and the discharge capacity retention is over 60% after 200 cycles.

502 citations

Journal ArticleDOI
TL;DR: The results show that this multi-functionalized GO has potential applications for targeted delivery and the controlled release of anticancer drugs.
Abstract: A dual-targeting drug delivery and pH-sensitive controlled release system based on multi-functionalized graphene oxide (GO) was established in order to enhance the effect of targeted drug delivery and realize intelligently controlled release. A superparamagnetic GO–Fe3O4 nanohybrid was firstly prepared via a simple and effective chemical precipitation method. Then folic acid, a targeting agent toward some tumor cells, was conjugated onto Fe3O4 nanoparticlesvia the chemical linkage with amino groups of the 3-aminopropyl triethoxysilane (APS) modified superparamagnetic GO–Fe3O4 nanohybrid, to give the multi-functionalized GO. Doxorubicin hydrochloride (Dox) as an anti-tumor drug model was loaded onto the surface of this multi-functionalized GO via π–π stacking. The drug loading capacity of this multi-functionalized GO is as high as 0.387 mg mg−1 and the drug release depends strongly on pH values. Cell uptake studies were carried out using fluorescein isothiocyanate labeled or Dox loaded multi-functionalized GO to evaluate their targeted delivery property and toxicity to tumor cells. The results show that this multi-functionalized GO has potential applications for targeted delivery and the controlled release of anticancer drugs.

500 citations


Authors

Showing all 43397 results

NameH-indexPapersCitations
Yi Chen2174342293080
Peidong Yang183562144351
Jie Zhang1784857221720
Yang Yang1712644153049
Qiang Zhang1611137100950
Bin Liu138218187085
Jun Chen136185677368
Hui Li1352982105903
Jie Liu131153168891
Han Zhang13097058863
Jian Zhou128300791402
Chao Zhang127311984711
Wei Chen122194689460
Xuan Zhang119153065398
Yang Li117131963111
Network Information
Related Institutions (5)
Nanjing University
105.5K papers, 2.2M citations

95% related

University of Science and Technology of China
101K papers, 2.4M citations

94% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Fudan University
117.9K papers, 2.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023186
2022927
20215,274
20204,645
20194,261
20183,520