scispace - formally typeset
Search or ask a question
Institution

Nankai University

EducationTianjin, China
About: Nankai University is a education organization based out in Tianjin, China. It is known for research contribution in the topics: Catalysis & Adsorption. The organization has 42964 authors who have published 51866 publications receiving 1127896 citations. The organization is also known as: Nánkāi Dàxué.


Papers
More filters
Journal ArticleDOI
25 Aug 2017-Science
TL;DR: These carbon nanotube yarn harvesters were used in the ocean to harvest wave energy, combined with thermally driven artificial muscles to convert temperature fluctuations to electrical energy, and used to power a light-emitting diode and to charge a storage capacitor.
Abstract: Mechanical energy harvesters are needed for diverse applications, including self-powered wireless sensors, structural and human health monitoring systems, and the extraction of energy from ocean waves. We report carbon nanotube yarn harvesters that electrochemically convert tensile or torsional mechanical energy into electrical energy without requiring an external bias voltage. Stretching coiled yarns generated 250 watts per kilogram of peak electrical power when cycled up to 30 hertz, as well as up to 41.2 joules per kilogram of electrical energy per mechanical cycle, when normalized to harvester yarn weight. These energy harvesters were used in the ocean to harvest wave energy, combined with thermally driven artificial muscles to convert temperature fluctuations to electrical energy, sewn into textiles for use as self-powered respiration sensors, and used to power a light-emitting diode and to charge a storage capacitor.

276 citations

Journal ArticleDOI
24 Mar 2016-ACS Nano
TL;DR: The preparation of surface-adaptive, Triclosan-loaded micellar nanocarriers showing enhanced biofilm penetration and accumulation, electrostatic targeting at acidic pH toward negatively charged bacterial cell surfaces in a biofilm, and antimicrobial release due to degradation of the micelle core by bacterial lipases constitutes a highly effective pathway to control blood-accessible staphylococcal biofilms using antimicrobials, bypassing biofilm recalcitrance to antimicrobial penetration.
Abstract: Biofilms cause persistent bacterial infections and are extremely recalcitrant to antimicrobials, due in part to reduced penetration of antimicrobials into biofilms that allows bacteria residing in the depth of a biofilm to survive antimicrobial treatment. Here, we describe the preparation of surface-adaptive, Triclosan-loaded micellar nanocarriers showing (1) enhanced biofilm penetration and accumulation, (2) electrostatic targeting at acidic pH toward negatively charged bacterial cell surfaces in a biofilm, and (3) antimicrobial release due to degradation of the micelle core by bacterial lipases. First, it was established that mixed-shell-polymeric-micelles (MSPM) consisting of a hydrophilic poly(ethylene glycol) (PEG)-shell and pH-responsive poly(β-amino ester) become positively charged at pH 5.0, while being negatively charged at physiological pH. This is opposite to single-shell-polymeric-micelles (SSPM) possessing only a PEG-shell and remaining negatively charged at pH 5.0. The stealth properties of ...

276 citations

Journal ArticleDOI
TL;DR: In this article, two Dy-Mn polymers with 3D-4f mixed metals and high symmetry (S6) with luminescent selectivity for Mg2+ were presented.
Abstract: Two Dy-Mn polymers, {[Dy(L1)3Mn(1.5)(H2O)3]3.125H2O}n (1, L1 = pyridine-2,6-dicarboxylic acid) and {[Dy(L2)3Mn(1.5)(H2O)6]8.25H2O}n (2, L2 = 4-hydroxylpyridine-2,6-dicarboxylic acid), with high symmetry (S6) have been prepared. Polymer 1 has a nanoporous 3D framework with channel of about 17.6 A diameter, while 2 has a honeycomb-type 2D structure with the cavity of approximately 14.4 A diameter. In the construction of multidimensional porous polymers with 3d-4f mixed metals, it is the first observation that a ligand substituent effect leads to dramatic differences in the structures formed. Luminescent studies reveal that the emission intensities of 1 and 2 increase significantly upon the addition of Mg2+, whereas the introduction of other metal ions leaves the intensity unchanged or even weakens it; hence, both of them may serve as good candidates of Mg2+ luminescent probes. To our knowledge, complex 1 is also the first example of a 3d-4f metal-based nanoporous polymer to exhibit luminescent selectivity for Mg2+. Magnetic susceptibility measurements reveal a rather rare ferromagnetic interaction in 2. Thermal gravimetric analyses and powder X-ray diffraction investigations have also been performed, suggestive of high thermal stability of 1.

275 citations

Journal ArticleDOI
20 May 2019
TL;DR: A number of families of accelerating optical waves have been identified in the paraxial and non-paraxial domains in space and/or time, with different methods developed to control at will their trajectory, amplitude, and beam width as mentioned in this paper.
Abstract: Over the last dozen years, the area of accelerating waves has made considerable advances not only in terms of fundamentals and experimental demonstrations, but also in connection to a wide range of applications. Starting from the prototypical Airy beam that was proposed and observed in 2007, new families of accelerating waves have been identified in the paraxial and nonparaxial domains in space and/or time, with different methods developed to control at will their trajectory, amplitude, and beam width. Accelerating optical waves exhibit a number of highly desirable attributes. They move along a curved or accelerating trajectory while being resilient to perturbations (self-healing) and are diffraction-free. It is because of these particular features that accelerating waves have been utilized in a variety of applications in the areas of filamentation, beam focusing, particle manipulation, biomedical imaging, plasmons, and material processing, among others.

275 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on the latest advances in the preparation, properties and potential applications of 3D micro-/nano-architectures made of graphene/graphene oxide-based networks, with emphasis on graphene foams and sponges.
Abstract: Recently, three-dimensional graphene/graphene oxide (GO) networks (3DGNs) in the form of foams, sponges and aerogels have attracted much attention. 3D structures provide graphene materials with high specific surface areas, large pore volumes, strong mechanical strengths and fast mass and electron transport, owing to the combination of the 3D porous structures and the excellent intrinsic properties of graphene. This review focuses on the latest advances in the preparation, properties and potential applications of 3D micro-/nano-architectures made of graphene/GO-based networks, with emphasis on graphene foams and sponges.

275 citations


Authors

Showing all 43397 results

NameH-indexPapersCitations
Yi Chen2174342293080
Peidong Yang183562144351
Jie Zhang1784857221720
Yang Yang1712644153049
Qiang Zhang1611137100950
Bin Liu138218187085
Jun Chen136185677368
Hui Li1352982105903
Jie Liu131153168891
Han Zhang13097058863
Jian Zhou128300791402
Chao Zhang127311984711
Wei Chen122194689460
Xuan Zhang119153065398
Yang Li117131963111
Network Information
Related Institutions (5)
Nanjing University
105.5K papers, 2.2M citations

95% related

University of Science and Technology of China
101K papers, 2.4M citations

94% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Fudan University
117.9K papers, 2.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023186
2022927
20215,274
20204,645
20194,261
20183,520