scispace - formally typeset
Search or ask a question
Institution

Nankai University

EducationTianjin, China
About: Nankai University is a education organization based out in Tianjin, China. It is known for research contribution in the topics: Catalysis & Adsorption. The organization has 42964 authors who have published 51866 publications receiving 1127896 citations. The organization is also known as: Nánkāi Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: This work demonstrates rapid fabrication of high-aspect-ratio microfluidic channels with various 3D configurations in glass substrates by femtosecond laser direct writing to enable rapid construction of complex 3D microfluidity devices for a wide array of lab-on-a-chip applications.
Abstract: The creation of complex three-dimensional (3D) microfluidic systems has attracted significant attention from both scientific and applied research communities. However, it is still a formidable challenge to build 3D microfluidic structures with arbitrary configurations using conventional planar lithographic fabrication methods. Here, we demonstrate rapid fabrication of high-aspect-ratio microfluidic channels with various 3D configurations in glass substrates by femtosecond laser direct writing. Based on this approach, we demonstrate a 3D passive microfluidic mixer and characterize its functionalities. This technology will enable rapid construction of complex 3D microfluidic devices for a wide array of lab-on-a-chip applications.

203 citations

Journal ArticleDOI
F. P. An1, A. B. Balantekin2, H. R. Band3, M. Bishai4  +218 moreInstitutions (38)
TL;DR: In this article, a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9 GWth nuclear reactors with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls in the Daya Bay experiment was reported.
Abstract: This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9 GWth nuclear reactors with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296 721 and 41 589 inverse β decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55±0.04) ×10(-18) cm(2) GW(-1) day(-1) or (5.92±0.14) ×10(-43) cm(2) fission(-1). This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is 0.946±0.022 (0.991±0.023) relative to the flux predicted with the Huber-Mueller (ILL-Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2σ over the full energy range with a local significance of up to ∼4σ between 4-6 MeV. A reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.

203 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the thermoresponsive micellization of poly(ethylene glycol)-b-poly(N-isopropylacrylamide) (PEG110-b-PNIPAM44) in water by static light scattering and dynamic light scattering.
Abstract: Thermoresponsive micellization of poly(ethylene glycol)-b-poly(N-isopropylacrylamide) (PEG110-b-PNIPAM44) in water is studied by static light scattering and dynamic light scattering. The critical aggregation temperature of PEG110-b-PNIPAM44 is a little higher than homopolymer PNIPAM, and it depends on the block copolymer concentration, which increases from 33.7 to 38.4°C when the copolymer concentration decreases from 2.0 to 0.20 mg/mL. Above the critical aggregation temperature, thermoresponsive micellization occurs, and the resultant spherical micelles consist of a PNIPAM core and a PEG shell. The block copolymer concentration exerts a strong influence on the size and structure of the resultant micelles. Micellization of PEG110-b-PNIPAM44 at higher copolymer concentration favors formation of narrowly distributed, small, and dense micelles, while large, loose micelles or micellar clusters form at lower block copolymer concentration.

203 citations

Journal ArticleDOI
TL;DR: In this paper, a new acceptor-donor-acceptor (A-D-A) type small-molecule acceptor NCBDT-4Cl using chlorinated end groups is reported.
Abstract: A new acceptor-donor-acceptor (A-D-A) type small-molecule acceptor NCBDT-4Cl using chlorinated end groups is reported. This new-designed molecule demonstrates wide and efficient absorption ability in the range of 600–900 nm with a narrow optical bandgap of 1.40 eV. The device based on PBDB-T-SF:NCBDT-4Cl shows a power conversion efficiency (PCE) of 13.1% without any post-treatment, which represents the best result for all as-cast organic solar cells (OSCs) to date. After device optimizations, the PCE was further enhanced to over 14% with a high short-circuit current density ( J sc) of 22.35 mA cm−2 and a fill-factor (FF) of 74.3%. The improved performance was attributed to the more efficient photo-electron conversion process in the optimal device. To our knowledge, this outstanding efficiency of 14.1% with an energy loss as low as 0.55 eV is among the best results for all single-junction OSCs.

203 citations


Authors

Showing all 43397 results

NameH-indexPapersCitations
Yi Chen2174342293080
Peidong Yang183562144351
Jie Zhang1784857221720
Yang Yang1712644153049
Qiang Zhang1611137100950
Bin Liu138218187085
Jun Chen136185677368
Hui Li1352982105903
Jie Liu131153168891
Han Zhang13097058863
Jian Zhou128300791402
Chao Zhang127311984711
Wei Chen122194689460
Xuan Zhang119153065398
Yang Li117131963111
Network Information
Related Institutions (5)
Nanjing University
105.5K papers, 2.2M citations

95% related

University of Science and Technology of China
101K papers, 2.4M citations

94% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Fudan University
117.9K papers, 2.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023186
2022927
20215,274
20204,645
20194,261
20183,520