scispace - formally typeset
Search or ask a question
Institution

Saint Mary's University

EducationHalifax, Nova Scotia, Canada
About: Saint Mary's University is a education organization based out in Halifax, Nova Scotia, Canada. It is known for research contribution in the topics: Population & Stars. The organization has 1931 authors who have published 4993 publications receiving 143226 citations.
Topics: Population, Stars, Galaxy, Volcanic rock, Basalt


Papers
More filters
Journal ArticleDOI
Anne D. Bjorkman1, Anne D. Bjorkman2, Isla H. Myers-Smith1, Sarah C. Elmendorf3, Sarah C. Elmendorf4, Sarah C. Elmendorf5, Signe Normand2, Nadja Rüger6, Pieter S. A. Beck, Anne Blach-Overgaard2, Daan Blok7, J. Hans C. Cornelissen8, Bruce C. Forbes9, Damien Georges1, Scott J. Goetz10, Kevin C. Guay11, Gregory H. R. Henry12, Janneke HilleRisLambers13, Robert D. Hollister14, Dirk Nikolaus Karger15, Jens Kattge16, Peter Manning, Janet S. Prevéy, Christian Rixen, Gabriela Schaepman-Strub17, Haydn J.D. Thomas1, Mark Vellend18, Martin Wilmking19, Sonja Wipf, Michele Carbognani20, Luise Hermanutz21, Esther Lévesque22, Ulf Molau23, Alessandro Petraglia20, Nadejda A. Soudzilovskaia24, Marko J. Spasojevic25, Marcello Tomaselli20, Tage Vowles23, Juha M. Alatalo26, Heather D. Alexander27, Alba Anadon-Rosell19, Alba Anadon-Rosell28, Sandra Angers-Blondin1, Mariska te Beest29, Mariska te Beest30, Logan T. Berner10, Robert G. Björk23, Agata Buchwal31, Agata Buchwal32, Allan Buras33, Katherine S. Christie34, Elisabeth J. Cooper35, Stefan Dullinger36, Bo Elberling37, Anu Eskelinen38, Anu Eskelinen39, Esther R. Frei15, Esther R. Frei12, Oriol Grau40, Paul Grogan41, Martin Hallinger, Karen A. Harper42, Monique M. P. D. Heijmans33, James I. Hudson, Karl Hülber36, Maitane Iturrate-Garcia17, Colleen M. Iversen43, Francesca Jaroszynska44, Jill F. Johnstone45, Rasmus Halfdan Jørgensen37, Elina Kaarlejärvi29, Elina Kaarlejärvi46, Rebecca A Klady12, Sara Kuleza45, Aino Kulonen, Laurent J. Lamarque22, Trevor C. Lantz47, Chelsea J. Little17, Chelsea J. Little48, James D. M. Speed49, Anders Michelsen37, Ann Milbau50, Jacob Nabe-Nielsen2, Sigrid Schøler Nielsen2, Josep M. Ninot28, Steven F. Oberbauer51, Johan Olofsson29, Vladimir G. Onipchenko52, Sabine B. Rumpf36, Philipp R. Semenchuk36, Philipp R. Semenchuk35, Rohan Shetti19, Laura Siegwart Collier21, Lorna E. Street1, Katharine N. Suding4, Ken D. Tape53, Andrew J. Trant21, Andrew J. Trant54, Urs A. Treier2, Jean-Pierre Tremblay55, Maxime Tremblay22, Susanna Venn56, Stef Weijers57, Tara Zamin41, Noémie Boulanger-Lapointe12, William A. Gould58, David S. Hik59, Annika Hofgaard, Ingibjörg S. Jónsdóttir60, Ingibjörg S. Jónsdóttir61, Janet C. Jorgenson62, Julia A. Klein63, Borgthor Magnusson, Craig E. Tweedie64, Philip A. Wookey65, Michael Bahn66, Benjamin Blonder67, Benjamin Blonder68, Peter M. van Bodegom24, Benjamin Bond-Lamberty69, Giandiego Campetella70, Bruno Enrico Leone Cerabolini71, F. Stuart Chapin53, William K. Cornwell72, Joseph M. Craine, Matteo Dainese, Franciska T. de Vries73, Sandra Díaz74, Brian J. Enquist75, Brian J. Enquist76, Walton A. Green77, Rubén Milla78, Ülo Niinemets79, Yusuke Onoda80, Jenny C. Ordoñez81, Wim A. Ozinga33, Wim A. Ozinga82, Josep Peñuelas40, Hendrik Poorter83, Hendrik Poorter84, Peter Poschlod85, Peter B. Reich86, Peter B. Reich87, Brody Sandel88, Brandon S. Schamp89, Serge N. Sheremetev90, Evan Weiher91 
University of Edinburgh1, Aarhus University2, Institute of Arctic and Alpine Research3, University of Colorado Boulder4, National Ecological Observatory Network5, Smithsonian Institution6, Lund University7, VU University Amsterdam8, University of Lapland9, Northern Arizona University10, Bigelow Laboratory For Ocean Sciences11, University of British Columbia12, University of Washington13, Grand Valley State University14, Swiss Federal Institute for Forest, Snow and Landscape Research15, Max Planck Society16, University of Zurich17, Université de Sherbrooke18, University of Greifswald19, University of Parma20, Memorial University of Newfoundland21, Université du Québec à Trois-Rivières22, University of Gothenburg23, Leiden University24, University of California, Riverside25, Qatar University26, Mississippi State University27, University of Barcelona28, Umeå University29, Utrecht University30, Adam Mickiewicz University in Poznań31, University of Alaska Anchorage32, Wageningen University and Research Centre33, Alaska Department of Fish and Game34, University of Tromsø35, University of Vienna36, University of Copenhagen37, University of Oulu38, Helmholtz Centre for Environmental Research - UFZ39, Spanish National Research Council40, Queen's University41, Saint Mary's University42, Oak Ridge National Laboratory43, University of Aberdeen44, University of Saskatchewan45, Vrije Universiteit Brussel46, University of Victoria47, Swiss Federal Institute of Aquatic Science and Technology48, Norwegian University of Science and Technology49, Research Institute for Nature and Forest50, Florida International University51, Moscow State University52, University of Alaska Fairbanks53, University of Waterloo54, Laval University55, Deakin University56, University of Bonn57, United States Forest Service58, Simon Fraser University59, University of Iceland60, University Centre in Svalbard61, United States Fish and Wildlife Service62, Colorado State University63, University of Texas at El Paso64, University of Stirling65, University of Innsbruck66, University of Oxford67, Rocky Mountain Biological Laboratory68, Pacific Northwest National Laboratory69, University of Camerino70, University of Insubria71, University of New South Wales72, University of Manchester73, National University of Cordoba74, University of Arizona75, Santa Fe Institute76, Harvard University77, King Juan Carlos University78, Estonian University of Life Sciences79, Kyoto University80, World Agroforestry Centre81, Radboud University Nijmegen82, Forschungszentrum Jülich83, Macquarie University84, University of Regensburg85, University of Sydney86, University of Minnesota87, Santa Clara University88, Algoma University89, Komarov Botanical Institute90, University of Wisconsin–Eau Claire91
04 Oct 2018-Nature
TL;DR: Biome-wide relationships between temperature, moisture and seven key plant functional traits across the tundra and over time show that community height increased with warming across all sites, whereas other traits lagged behind predicted rates of change.
Abstract: The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature-trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.

425 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an overview of the key characteristics of small-scale coastal marine fisheries in Latin America and the Caribbean as well as an examination of some of the weaknesses, gaps, and challenges faced in fisheries assessment and management within the region.

424 citations

Journal ArticleDOI
R. K. Saito1, Maren Hempel1, Dante Minniti1, Dante Minniti2, Philip W. Lucas3, Marina Rejkuba4, Ignacio Toledo5, Oscar A. Gonzalez4, Javier Alonso-García1, Mike Irwin6, Eduardo Gonzalez-Solares6, Simon Hodgkin6, James R. Lewis6, Nicholas Cross7, Valentin D. Ivanov4, Eamonn Kerins8, Jim Emerson9, M. Soto10, E. B. Amôres11, Sebastián Gurovich12, I. Dékány1, R. Angeloni1, Juan Carlos Beamin1, Márcio Catelan1, Nelson Padilla1, Manuela Zoccali1, Manuela Zoccali13, P. Pietrukowicz14, C. Moni Bidin15, Francesco Mauro15, Doug Geisler15, S. L. Folkes16, Stuart E. Sale1, Stuart E. Sale16, Jura Borissova16, Radostin Kurtev16, Andrea Veronica Ahumada4, Andrea Veronica Ahumada17, M. V. Alonso12, M. V. Alonso17, A. Adamson, Julia Ines Arias10, Reba M. Bandyopadhyay18, Rodolfo H. Barbá10, Rodolfo H. Barbá19, Beatriz Barbuy20, Gustavo Baume21, Luigi R. Bedin13, Andrea Bellini22, Robert A. Benjamin23, Eduardo Luiz Damiani Bica24, Charles Jose Bonatto24, Leonardo Bronfman25, Giovanni Carraro4, André-Nicolas Chené15, André-Nicolas Chené16, Juan J. Clariá17, J. R. A. Clarke16, Carlos Contreras3, A. Corvillon1, R. de Grijs26, R. de Grijs27, Bruno Dias20, Janet E. Drew3, C. Farina21, Carlos Feinstein21, E. Fernández-Lajús21, Roberto Claudio Gamen21, Wolfgang Gieren15, Bertrand Goldman28, Carlos González-Fernández29, R. J. J. Grand30, G. Gunthardt17, Nigel Hambly7, Margaret M. Hanson31, Krzysztof G. Hełminiak1, Melvin G. Hoare32, L. Huckvale8, Andrés Jordán1, Karen Kinemuchi33, A. Longmore34, Martin Lopez-Corredoira35, Martin Lopez-Corredoira36, Thomas J. Maccarone37, Daniel J. Majaess38, Eric Martin36, N. Masetti, Ronald E. Mennickent15, I. F. Mirabel, Lorenzo Monaco4, Lorenzo Morelli22, Veronica Motta16, T. Palma17, M. C. Parisi17, Quentin A. Parker39, Quentin A. Parker40, F. Peñaloza16, Grzegorz Pietrzyński15, Grzegorz Pietrzyński14, Giuliano Pignata41, Bogdan Popescu31, Mike Read7, A. F. Rojas1, Alexandre Roman-Lopes10, Maria Teresa Ruiz25, Ivo Saviane4, Matthias R. Schreiber16, A. C. Schröder42, Saurabh Sharma43, Saurabh Sharma16, Michael D. Smith44, Laerte Sodré20, Joseph J. Stead32, Andrew W. Stephens, Motohide Tamura, C. Tappert16, Mark Thompson3, Elena Valenti4, Leonardo Vanzi1, Nicholas A. Walton6, W. A. Weidmann17, Albert A. Zijlstra8 
TL;DR: The ESO VISTA public survey VISTA variables in the V�a L�ctea (VVV) started in 2010 and is expected to run for about five years.
Abstract: Context The ESO public survey VISTA variables in the V�a L�ctea (VVV) started in 2010 VVV targets 562 sq deg in the Galactic bulge and an adjacent plane region and is expected to run for about five years Aims: We describe the progress of the survey observations in the first observing season, the observing strategy, and quality of the data obtained Methods: The observations are carried out on the 4-m VISTA telescope in the ZYJHK s filters In addition to the multi-band imaging the variability monitoring campaign in the K s filter has started Data reduction is carried out using the pipeline at the Cambridge Astronomical Survey Unit The photometric and astrometric calibration is performed via the numerous 2MASS sources observed in each pointing Results: The first data release contains the aperture photometry and astrometric catalogues for 348 individual pointings in the ZYJHK s filters taken in the 2010 observing season The typical image quality is 09 arcsec {-10 arcsec} The stringent photometric and image quality requirements of the survey are satisfied in 100% of the JHK s images in the disk area and 90% of the JHK s images in the bulge area The completeness in the Z and Y images is 84% in the disk, and 40% in the bulge The first season catalogues contain 128 � 10 8 stellar sources in the bulge and 168 � 10 8 in the disk area detected in at least one of the photometric bands The combined, multi-band catalogues contain more than 163 � 10 8 stellar sources About 10% of these are double detections because of overlapping adjacent pointings These overlapping multiple detections are used to characterise the quality of the data The images in the JHK s bands extend typically 4 mag deeper than 2MASS The magnitude limit and photometric quality depend strongly on crowding in the inner Galactic regions The astrometry for K s = 15-18 mag has rms 35-175 mas Conclusions: The VVV Survey data products offer a unique dataset to map the stellar populations in the Galactic bulge and the adjacent plane and provide an exciting new tool for the study of the structure, content, and star-formation history of our Galaxy, as well as for investigations of the newly discovered star clusters, star-forming regions in the disk, high proper motion stars, asteroids, planetary nebulae, and other interesting objects Based on observations taken within the ESO VISTA Public Survey VVV, Programme ID 179B-2002

418 citations

Journal ArticleDOI
TL;DR: The authors furthers the argument for a stakeholder theory that integrates into managerial decision-making the relationship between business organizations and the natural environment, and provides a stronger basis for arguing for the salience of the environment as the primary and primordial stakeholder of the firm.
Abstract: This article furthers the argument for a stakeholder theory that integrates into managerial decision-making the relationship between business organizations and the natural environment The authors review the literature on stakeholder theory and the debate over whom or what should count as a stakeholder The authors also critique and expand the stakeholder identification and salience model developed by Mitchell and Wood (1997) by reconceptualizing the stakeholder attributes of power, legitimacy, and urgency, as well as by developing a fourth stakeholder attribute: proximity In this way, the authors provide a stronger basis for arguing for the salience of the natural environment as the primary and primordial stakeholder of the firm

409 citations

Journal ArticleDOI
TL;DR: A review of recent developments in the field with particular emphasis on how symmetry and function at the molecular level can be used to control solid-state architecture is provided in this paper, where hydrogen bonding represents perhaps the best understood non-covalent force.

406 citations


Authors

Showing all 1958 results

NameH-indexPapersCitations
Scott Chapman11857946199
Michael J. Zaworotko9751944441
Brad K. Gibson9456438959
Christine D. Wilson9052839198
Peter A. Cawood8736227832
Mark D. Fleming8143336107
Julian Barling7526222478
Winslow R. Briggs7426919375
Ian G. McCarthy7120417912
Tomislav Friščić7029418307
Nico Eisenhauer6640015746
Warren E. Piers6421714555
Amanda I. Karakas6332112797
Yuichi Terashima5925911994
Colin Mason5823612490
Network Information
Related Institutions (5)
University of Western Ontario
99.8K papers, 3.7M citations

87% related

University of British Columbia
209.6K papers, 9.2M citations

87% related

University of Waterloo
93.9K papers, 2.9M citations

87% related

University of Alberta
154.8K papers, 5.3M citations

87% related

Queen's University
78.8K papers, 2.8M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202312
202250
2021217
2020192
2019214
2018214