scispace - formally typeset
Search or ask a question
Institution

Tokyo University of Science

EducationTokyo, Japan
About: Tokyo University of Science is a education organization based out in Tokyo, Japan. It is known for research contribution in the topics: Catalysis & Thin film. The organization has 15800 authors who have published 24147 publications receiving 438081 citations. The organization is also known as: Tōkyō Rika Daigaku & Science University of Tokyo.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review various applications of f(R) theories to cosmology and gravity, such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds.
Abstract: Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.

524 citations

Journal ArticleDOI
TL;DR: NOMA can be expected to efficiently exploit the near-far effect experienced in cellular environments and offer a better tradeoff between system efficiency and user fairness than orthogonal multiple access (OMA), which is widely used in 3.9 and 4G mobile communication systems.
Abstract: SUMMARY This paper presents our investigation of non-orthogonal multiple access (NOMA) as a novel and promising power-domain user multiplexing scheme for future radio access. Based on information theory, we can expect that NOMA with a successive interference canceller (SIC) applied to the receiver side will offer a better tradeoff between system efficiency and user fairness than orthogonal multiple access (OMA), which is widely used in 3.9 and 4G mobile communication systems. This improvement becomes especially significant when the channel conditions among the non-orthogonally multiplexed users are significantly different. Thus, NOMA can be expected to efficiently exploit the near-far effect experienced in cellular environments. In this paper, we describe the basic principle of NOMA in both the downlink and uplink and then present our proposed NOMA scheme for the scenario where the base station is equipped with multiple antennas. Simulation results show the potential system-level

518 citations

Journal ArticleDOI
TL;DR: A novel photoluminescent ink for rewritable media that dichroically emits phosphorescence due to a structural bistability of the self-assembled luminophor is reported, which can provide an important step towards the next-generation security technology for information handling.
Abstract: Security inks have become of increasing importance. They are composed of invisible substances that provide printed images that are not able to be photocopied, and are readable only under special environments. Here we report a novel photoluminescent ink for rewritable media that dichroically emits phosphorescence due to a structural bistability of the self-assembled luminophor. Long-lasting images have been developed by using conventional thermal printers, which are readable only on exposure to ultraviolet light, and more importantly, are thermally erasable for rewriting. Although thermally rewritable printing media have already been developed using visible dyes and cholesteric liquid crystals, security inks that allow rewriting of invisible printed images are unprecedented. We realized this unique feature by the control of kinetic and thermodynamic processes that compete with one another in the self-assembly of the luminophor. This strategy can provide an important step towards the next-generation security technology for information handling.

516 citations

Journal ArticleDOI
TL;DR: The authors' atomic scale observations suggest that carbon atoms diffuse through the bulk of iron carbide nanoparticles during the growth of CNTs.
Abstract: We have first observed the nucleation and growth process of carbon nanotubes (CNTs) from iron carbide (Fe 3C) nanoparticles in chemical vapor deposition with C 2H 2 by in situ environmental transmission electron microscopy. Graphitic networks are formed on the fluctuating iron carbide nanoparticles, and subsequently CNTs are expelled from them. Our atomic scale observations suggest that carbon atoms diffuse through the bulk of iron carbide nanoparticles during the growth of CNTs.

515 citations

Journal ArticleDOI
TL;DR: In view of the situation that environmental issues become more serious day by day, recent studies on practical applications of TiO 2 photocatalysis for environmental purification are reviewed as discussed by the authors.
Abstract: In view of the situation that environmental issues become more serious day by day, recent studies on practical applications of TiO 2 photocatalysis for environmental purification are reviewed. Although the fundamental aspects and the mechanisms of TiO 2 photocatalysis have recently become quite well understood, effective photocatalytic environmental purifier, especially water purifier, could not be developed to the stage of real industrial technology. The removal rate of gaseous or aqueous contaminants is influenced by numerous parameters; UV light intensity, substrate concentration, O 2 partial pressure, humidity, substrate type, and so on. Moreover, TiO 2 photocatalyst essentially has a difficulty in decomposition of large amount of contaminants or refractory chemicals. As the solutions of these problems, combination with other processes such as advanced oxidation processes and improvement of the design of photocatalytic environmental purification systems are described. During the past several years, the strategies for effective design of the system are well discussed and evaluated. The reactor design for air- or water-purification can be classified into two main strategies: (1) enlargement of reactive surface area and (2) improvement of mass transfer. Based on these insights, very recent achievements for development of photocatalytic environmental purification system with our contribution in each aspect and future research directions are reviewed.

514 citations


Authors

Showing all 15878 results

NameH-indexPapersCitations
Kazunori Kataoka13890870412
Yoichiro Iwakura12970564041
Kouji Matsushima12459056995
Masaki Ishitsuka10362439383
Shinsuke Tanabe9872237445
Tatsumi Koi9741150222
Hirofumi Akagi9461843179
Clifford A. Lowell9125823538
Teruo Okano9160528346
László Á. Gergely8942660674
T. Sumiyoshi8885562277
Toshinori Nakayama8640525275
Akihiko Kudo8632839475
Hans-Joachim Gabius8569928085
Motohide Tamura85100732725
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

96% related

Osaka University
185.6K papers, 5.1M citations

95% related

University of Tokyo
337.5K papers, 10.1M citations

94% related

Nagoya University
128.2K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202356
2022137
20211,357
20201,481
20191,510
20181,429