scispace - formally typeset
Search or ask a question
Institution

Tokyo University of Science

EducationTokyo, Japan
About: Tokyo University of Science is a education organization based out in Tokyo, Japan. It is known for research contribution in the topics: Catalysis & Thin film. The organization has 15800 authors who have published 24147 publications receiving 438081 citations. The organization is also known as: Tōkyō Rika Daigaku & Science University of Tokyo.


Papers
More filters
Journal ArticleDOI
TL;DR: A method for the determination of phosphorylation sites in phosphoproteins based on column-switching high-performance liquid chromatography (HPLC) has been developed and detected Pseudo-molecular ion peaks corresponding to Gln-Ile-Ser-Val-Arg and Glu-Ala-Thr-Ser(p)-Gln-Glu-Leu which agreed with the theoretically expected phosphopeptide fragments.
Abstract: A method for the determination of phosphorylation sites in phosphoproteins based on column-switching high-performance liquid chromatography (HPLC) has been developed. The HPLC system consisted of a titania precolumn for the selective adsorption of phosphopeptides, an anion-exchange analytical column and a UV detector (215 nm). Rabbit muscle phosphorylase a (RPa) and porcine stomach pepsin (PSP) were tested as model phosphoproteins. After protease digestion, the resulting phosphopeptides were successfully isolated by column-switching HPLC. The phosphopeptide fractions were analyzed by electrospray ionization mass spectrometry with a positive or negative ion mode after purification by reversed-phase HPLC. Pseudo-molecular ion peaks corresponding to Gln-Ile-Ser(p)-Val-Arg (MW 681.7) and Glu-Ala-Thr-Ser(p)-Gln-Glu-Leu (MW 856.8) were detected from the tryptic digest of RPa and chymotryptic digest of PSP, respectively, which agreed with the theoretically expected phosphopeptide fragments.

112 citations

Journal ArticleDOI
TL;DR: In this paper, numerical and experimental studies of the transient shock wave phenomena in a liquid containing non-condensable gas bubbles are presented, where individual bubbles are tracked to estimate the effect of volume oscillations on the wave phenomena.
Abstract: Numerical and experimental studies of the transient shock wave phenomena in a liquid containing non‐condensable gas bubbles are presented. In the numerical analysis, individual bubbles are tracked to estimate the effect of volume oscillations on the wave phenomena. Thermal processes inside each bubble, which have significant influence on the volume oscillation, are calculated directly using full equations for mass, momentum and energy conservation, and those results are combined with the averaged conservation equations of the bubbly mixture to simulate the propagation of the shock wave. A silicone oil/nitrogen bubble mixture, in which the initial bubble radius is about 0.6 mm and the gas volume fraction is 0.15% – 0.4%, is used in the shock tube experiments. The inner diameter of the shock tube is chosen to be 18 mm and 52 mm in order to investigate the multidimensional effects on the wave phenomena. In a fairly uniform bubbly mixture, the experimental results agree well with the numerical ones computed using a uniform spatial distribution of bubbles. On the other hand, in all the other experiments, the bubbles in the shock tubes are not distributed uniformly, being relatively concentrated along the axis of the tube. This non‐uniformity substantially alters the profile of the shock waves. The numerical predictions where such a distribution is taken into account agree well with those experimental data.

112 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that for the cuprates La2−xRExCuO4+y, which form the T′-parent compounds of the La-based electron doped cuprates, they can be synthesized by molecular beam epitaxy in the T-structure.

112 citations

Journal ArticleDOI
TL;DR: It is suggested that IP3-mediated astrocytic Ca2+ signaling correlates with the formation of functional tripartite synapses in the hippocampus, and is associated with behavioral impairments in spatial reference memory and remote contextual fear memory.
Abstract: Neuronal activity alters calcium ion (Ca2+) dynamics in astrocytes, but the physiologic relevance of these changes is controversial. To examine this issue further, we generated an inducible transgenic mouse model in which the expression of an inositol 1,4,5-trisphosphate absorbent, “IP3 sponge”, attenuates astrocytic Ca2+ signaling. Attenuated Ca2+ activity correlated with reduced astrocytic coverage of asymmetric synapses in the hippocampal CA1 region in these animals. The decreased astrocytic ‘protection’ of the synapses facilitated glutamate ‘spillover’, which was reflected by prolonged glutamate transporter currents in stratum radiatum astrocytes and enhanced N-methyl-D-aspartate receptor currents in CA1 pyramidal neurons in response to burst stimulation. These mice also exhibited behavioral impairments in spatial reference memory and remote contextual fear memory, in which hippocampal circuits are involved. Our findings suggest that IP3-mediated astrocytic Ca2+ signaling correlates with the formation of functional tripartite synapses in the hippocampus.

112 citations

Journal ArticleDOI
01 Jun 2004-Polymer
TL;DR: In this paper, the effects of the draw ratio (DR), draw temperature (T d ), and draw stress on the crystal/crystal transformation from the α- to the β-form crystals were studied.

111 citations


Authors

Showing all 15878 results

NameH-indexPapersCitations
Kazunori Kataoka13890870412
Yoichiro Iwakura12970564041
Kouji Matsushima12459056995
Masaki Ishitsuka10362439383
Shinsuke Tanabe9872237445
Tatsumi Koi9741150222
Hirofumi Akagi9461843179
Clifford A. Lowell9125823538
Teruo Okano9160528346
László Á. Gergely8942660674
T. Sumiyoshi8885562277
Toshinori Nakayama8640525275
Akihiko Kudo8632839475
Hans-Joachim Gabius8569928085
Motohide Tamura85100732725
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

96% related

Osaka University
185.6K papers, 5.1M citations

95% related

University of Tokyo
337.5K papers, 10.1M citations

94% related

Nagoya University
128.2K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202356
2022137
20211,357
20201,481
20191,510
20181,429